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Każde stówo - podobnie jak imię - niesie w sobie różną treść, budzi różne skojarzenia
zależne od doświadczeń tego, kogo spotyka, i tak, stówo analiza znaczy dla każdego
matematyka coś innego. Dla jednych obejmuje ono niewiele więcej niż rachunek
różniczkowy i całkowy, dla innych kojarzy się z twierdzeniem Riemanna-Rocha czy
formami harmonicznymi.

Jest to jedyny podręcznik, który wychodząc od zera - doktadniej mówiąc od liczb wy-
miernych - dochodzi do teorii dystrybucji, catek prostych, analizy na rozmaitościach
zespolonych, przestrzeni Kahlera, teorii snopów i wiązek wektorowych itd.

Celem moim byto pokazanie młodemu człowiekowi piękna i bogactwa tego niezwyk-
łego świata, jakim jest współczesna analiza matematyczna.

(z Przedmowy)

Jest to reprint drugiego zmienionego wydania drugiej części trylogii
Profesora Krzysztofa Maurina Analiza, które ukazało się nakładem PWN
w 1991 roku jako tom 70 BIBLIOTEKI MATEMATYCZNEJ.

Część II. Ogólne struktury matematyki, funkcje algebraiczne, całkowa-
nie, analiza tensorowa. Głównym pojęciem jest tu całka. Autor opowiada
historię narodzin podstawowych pojęć i struktur matematyki współczesnej,
pokazuje ich powiązanie z fizyką i filozofią, kładąc duży nacisk na rolę tradycji
w matematyce. Liczne komentarze sprawiają, że Czytelnik może dostrzec
związki, które łączą na pozór odległe działy matematyki.

Książka zainteresuje fizyków i matematyków, studentów tych kierunków, dok-
torantów, nauczycieli akademickich, naukowców.

Polecamy także:
Krzysztof Maurin, Analiza, cz. l

Krzysztof Maurin, Analiza, cz. III

Krzysztof Maurin, Matematyka a fizyka
- książka, w której Autor dowodzi jedności matematyki i fizyki


