Spis tresci

Rozdziat 1.

Rozdziat 2.

Rozdziat 3.

Rozdziat 4.

0 autorachciecciireiiisin s ———— 9
L1 =3 11
O KSIAZCE vt e et e et e et e et e et e eete e et e e teeetee e te e et e eereeereenaee e 11
Tworca programowania eXCelOWEZ0ccerverieieieieiriieieee ettt 12
Excel jako platforma do tworzenia aplikacji 14
Srukturaoc.oeeeieneniennieee v 17
Przyktady 18
Wersje ODSTUZIWANEoouiiiiiiiiieieieeeee ettt 18
R0OAZ&jE KIOJU PISINA ..ottt ettt be e neas 19
Na plycie CD
POIMOC T WSPATCIE ...ttt ettt ettt sesee st saenean 20
Architektura aplikacjiccccorrmeiiimiiimsiir s s 23
Koncepcje

WIHOSKI ettt ettt ettt b ettt s b et aenean
Najlepsze praktyki programowania w Excelu i VBAccoceciieniennee 35
Konwencje nazw

Najlepsze praktyki organizacji i tworzenia struktury aplikacjiccceeevvereneniecncnnenn 46
Najlepsze praktyki okreslajace ogolne zasady tworzenia oprogramowania 50
WIHOSKI ottt sttt 66
Projektowanie arkuszaccociimeiimiimiiinn i e e e 67
Zasady projektowania dobrego interfejsu uzytkOwnikacccoeceeverievereenieneerienenne 67

Wiersze i kolumny programu: podstawowe techniki
tworzenia interfejsu uzytkownika

Nazwy definiowanecccecceenene
SEYLE ettt ettt ettt sa e
Techniki kreslenia interfejsOw UZytkOWnikacccocvvevenenienieiniinincncceencscneee 79
Weryfikacja danych
Formatowanie WartnkOWEccccoueoiiirininiinieieininenee ettt 86
Uzywanie Kontrolek W arkUSZUcccevieriiriiiieniieierieetesieetee ettt 92
Przyktad praktyCznyccccoecieiieieiieieiecee ettt s 94

WIHOSKI .ttt ettt et ettt et ettt e et e e teeetaeeteeeaseeteeenseeeseeeaseenaeeenreean 99

Excel. Programowanie dla profesjonalistow

Rozdziat 5.

Rozdziat 6.

Rozdziat 7.

Rozdziat 8.

Rozdziat 9.

Rozdziat 10.

Rozdziat 11.

Dodatki funkcyjne, ogolne i specjalizowane dla aplikacji 101
Cztery etapy rozwoju i dziatania aplikacji
Dodatki bedace bibliotekami funkcjieoueeveieiriiiniiieeeeeeeeeee e
DOdatki OZOINEeouiiiiiiieiiee ettt ee et
Dodatki specjalizowane dla aplikacji
Przyklad praktyCznyccocceceveiiinieieieeeeee s
T4 18 0]« OO TP

Aplikacja dyktatorskaccccceeeimeimeiiimererirn s s rm s smn e

Struktura aplikacji dyktatorskie]coceeeeeriirieniiieiiiieieeeeee e
Przyklad praktyCznyccccccoveririiiiiiiiniccceereete e
WIHOSKI .eneiciieiceier ettt ettt sttt s a e

Uzywanie moduiow klas do tworzenia obiektowccoveeiieniicnnees 149
TWOIZENIC ODICKIOWeovveiieiieiieiieie ettt sttt et sttt et e st et e bessaesbeeseenaesneensean 149
Tworzenie kolekcji
WYChWYtyWanie ZAArzZencecveeiecierierieniieieie et eeesie e ese e sre e seeesaesseensenas 159
GENEroWanie ZAAIZEMccveveuiruiriiriinteteiei ettt ettt ettt sttt be st be e reneene 161
Przyktad praktyczny
WIHOSKI ettt ettt b et ettt ee b bt een

Zaawansowane sterowanie paskami polecenccovcercerrcreennees 175
Projektowanie paska polecen
Tablicowe sterowanie paskami POIECENccceoerirereriinieieieiieierte e
Zbieranie WSZYStKI®Z0 TAZEIMooveieuieiieiiiieeieieeeet ettt
tadowanie niestandardowych ikon z plikow
Podczepianie obstugi zdarzen do kontrolek paska polecencccevevieviniiniencnnnnnne. 205
Przyklad praktyCznycccccooeriiiiiiiiiinieceteeseee et 213
WIHOSKI .eaeiciieiceiene ettt ettt sttt b e sa e 218

Zrozumienie i uzywanie wywotan Windows APIcccoveiieniieanees 221
OZOINY OPIS .everveeuieiieiierieeie sttt et te et este st e b e e st e tesbe et e sbeentesbeentenseensenseeneesesanensesnean
Praca z ekranem

Praca z oknami
Praca Z KIQWIATUTGocviiiuiiiiieciee ettt ettt et eve e eaaeeeteeeaaeeeneas 236
Praca z systemem plikow i siecig ..
Przyktad praktyCznyooooooeieieiiieee e e 252
WIHOSKI ottt ettt ettt s b et bbbt e 255

Projektowanie formularzy UserForm i najlepsze praktyki 257
ZASAAY ettt ettt et b e st naesbeenneeaee 257
Podstawy KONIOIEKccooiiiiiiiiiiiiiee s 265
Efekty wizualne
Pozycjonowanie i rozmiary formularzy UserFOrmc..coceeveovininenineniinicninenne 278
KICALOTY ..o

Dynamiczne formularze UserForm ..
Niemodalne formularze UserForm
Wyszczegolnienie KONtrolekocooiiiiiiiiiiiiiiieeeecce e
Przyktad praktyczny
WHHOSKI .ttt st s

=T ¢ (=Y 1=/
Co to jest interfejs?ocevereeneee.
Ponowne uzycie kodu
Definiowanie wiasnych interfejSOWcoccoeiriiiriiiiniiieeieeeee e 308

Spis tresci 5
Wdrazanie wlasnego interfejSucooiririerieieiiieierieee e 309
Uzywanie Wiasnych interfejSOWcccoviiiiiiriiiniiiiieeeeeceee s 311
Klasy pOlMOTTICZIGecviiuiiiiiiiiiiiiieieieete et 312
Polepszanie SOIANOSCT ...c..evvieiiriiiiiiieieie ettt st 316
Upraszczanie rozwoju
Architektura modulOw rozszerzajacychccoovvevierieciininieieeecee e 326
PrzyKtad praktyCznyccccecevieiieniieiesieeetc ettt s 327
WIHOSKI ettt b et b ettt ee et et neen 329
Rozdziat 12. Obstuga btedow VBAc.cocciiimiiimiiisenissrssssssssssssssssssssasssnnssns
Pojecia obstugi DIGAOWocueeiiiiieiiiiceeeet e
Zasada pojedynczego punktu wyjscia .
Prosta obstuga BIGAOWc.oouiiiiiiiiiee e
Ztozone projekty obstugi BIQAOWcoveuiiiiiiiiiiiecee e
Centralna obstuga btgdow
Obstuga btedow w klasach i formularzach UserFormc.ccooceeveiiniiiiniincncnienene 350
Zbieranie WSZYStKICZO TAZEIMceveeuieieriieiitieiesieeitete et e e seesteeteeteseeeaesaeenaeseeensesaes 351
Przyktad praktyczny
WIHOSKI .ttt ettt sttt b et
Rozdziat 13. Programowanie i bazy danychccooiiiimimimiiininissinse s nennneans 365
Wprowadzenie do baz danych
Projektowanie warstwy dostepu do danychcceecveviecieniencienieiceee e 380
Dostep do danych za pomoca SQL 1 ADO ...o.eivieiieieiieieeeeeetee e 381
Dalsze pozycje do czytania
Przyktad praktyCzinycoooooeeieieiiieeeee e e
WIHOSKI .ttt sttt sb et bbbt e
Rozdziat 14. Techniki przetwarzania danychcccooimiiiiiicrcr s 409
Struktury danych EXCElaccooieiiiiiiiiiee e 409
Funkcje przetwarzania danychccccoceeviiiiiiiniiiieeee e 415

Rozdziat 15.

Rozdziat 16.

Rozdziat 17.

Zaawansowane funkcje
WIHOSKI .eniiciieicetere ettt ettt ettt sttt sn e

Zaawansowane techniki tworzenia wykresowccoocvreeiicnnncnns 433
Podstawowe techniki
TeChniKi VBA ..ottt et et staeebe e abeeereeeaneens
WIHOSKI .uviiiiiieiie ettt ettt et ettt e et e et e e b e e eteaeabeebeeesseeeteeeaseesseenseessseenseenseas

Debugowanie kodow VBAccccciimiimiimnienne s nssssssssssssssssnssnns 453
Podstawowe techniki debugowania kodow VBAccccoeoiiiiininininiiiicncee

Okno Immediate (Ctrl+G)
Call Stack — stos wywotan (Ctrl+L) ..
OKNO WALCh ..ot
OKNO LOCALS .ottt ettt
Object Browser — przegladarka obiektowa (F2)
Tworzenie dzialajacego 0toczenia tESTOWEEZO0ovvereverierierieriieieniieieeie e
STOSOWANIE ASETCT .vevveeuvenriruieriieiienteeterteettestestte bt sttetesbeestesbeebesbeeseesbeeabenbesseenbesneensenee
Debugerskie skroty klawiaturowe, ktore powinien zna¢ kazdy programista .
WIHOSKI .ttt ettt ettt sttt

Optymalizacja wydajnosci VBA
Mierzenie wydajnosci
Program narz¢dziowy PerfMon
MYSIENIC KICALYWIIE ..c.veeuvivieiieieeiieiieieste ettt et te sttt e saestee s e ssaesbesseensesseessesseensensas

6 Excel. Programowanie dla profesjonalistow
Makrooptymalizacja
Mikrooptymalizacja
WIHOSKI .ttt sttt ettt sb et sbe e
Rozdziat 18. Sterowanie innymi aplikacjami Officecccccocimimimiicicircicneaeeas 513
POASTAWY ..ttt ettt st sttt et 513
Modele obiektowe gldwnych aplikacji Officeccccovierineiiininiiecieeecee, 526
Przyklad praktyCznycccccoveriiiiiiiiiniiecceereecee et 537
WIHOSKI .ttt ettt sttt sa e 537
Rozdziat 19. XLL i API €ceuiieeiieeiieminnm s s smessm e s s nm s s s s s smm s s mm s s nm s nnmnnn 539
Dlaczego warto tworzy¢ funkcje arkusza na bazie XLL?cccoveeivenininiinincnennns 539
Tworzenie projektu XLL w Visual Studiocccoeceevierieiieninienieeiecceeeseeeeeeie e 540
SruKtura XLL ..o 545
Typy danych XLOPER 1 OPERccoociiiiiiiiiiiieceeeeeeeee e 552
FUNKC]a EXCEIA ..ottt ettt ettt s st essesaeensenns 556
Powszechnie uzywane funkcje APT Cooooiiiiiiiiiiieeeeeee e 558
XLOPER i zarzadzanie PAmiGCiaceeeceruerueruereereriieiesteneeeeseeseseesseseeeeneeseeseseesseneens 559
Rejestrowanie 1 wyrejestrowywanie wlasnych funkcji arkuszacoceeeeieienennnne. 560
Przyktadowa funkcja apliKacjlceceeverieriniiiiiniiiieicee e 562
Debugowanie funkcji arkuUSZac.eecveviriiniieienieeieiteee e e 564
Roézne tematy
Dodatkowe Zrddta INfOrmMAaCHiccveeiecierieiicieieieeee et 566
WIHOSKI .ttt ettt sttt ettt b et 568
Rozdziat 20. Potaczenie Excela i Visual Basica 6ccocimeimmcsimmmsinnmsinnesinnnanns 569
Wita] $wiecie ACtIVEX DLLoccvioiieieieeieieciieiesie ettt 570
Dlaczego uzywa¢ VB6 ActiveX DLL w projektach Excel VBA?cccoceviiiiiinennne 583
In-process kontra out-of-process 596
Automatyzacja Excela z VB6 EXE 597
Przykltady praktyCzneccoocooiiiioiiiinieieeeeee et 603
WIHOSKI ettt ettt ettt st sbe e 615
Rozdziat 21. Pisanie dodatkow w Visual BasiC 6cceeeiimmeessinmmssssinmsesssnn 617
Dodatek Wita] SWIECIE ...c.eevuieiiriiiiiiieierieetet ettt s 617
Projektant dodatkow (Add-in DeSIZNer)cccceceverieniiniinienieeeieesteeeeee e 621
INSALACTA w.nvieeieieeiiete ettt ettt sttt et et eneen 624
Zdarzenia AddinINSLANCEeeceeruieieriiiieiieieie sttt st 625
Obstuga paska polecen
Dlaczego warto uzywaé dodatku COM?cccccvviirieriieienieeieicee e 633
Automatyzacja dOdatkOWccooviiieiiiiiiiieeee e 634
Przyktad praktyczny
WIHOSKI ettt ettt ettt sbe et bt e
Rozdziat 22. Uzywanie VB.NET i Visual Studio Tools for Officec..ccccevrmuvennns 639
Ogolny opis
Jak wplywaé na strukturg INET?ocooiiiiiiiiiiiieeecee e 641
ZarZadZane SKOTOSZYLYccueeoierieriiniieierieeitet ettt sttt ettt ettt sb e sbe e 643
Zarzadzane dodatki Excela
Hybrydowe rozwigzania VBA/VSTOcccccooiiiiiiiiieieeeeeeeeee e 659
Model bezpieczeNStWa VSTOccocieciiriieiiiieierieeeete ettt nas 661
Duze zagadnienia
Dalsze Zrodta infOrmaciioceeveoieieiiiiisee e 672
Przyktad praktyCzinycooooeieiiiiieeeee et 672

WIHOSKI ittt ettt e e et e e et e e eett e e e e aaee e eeateeeeteeeeeaaeeeennes 675

Spis tresci

Rozdziat 23.

Rozdziat 24.

Excel, XML i ustugi SieCIOWEccrmermerrcnrrcnrrernermnsrmnsrcnrsmrnnasnns 677
XML

USHUZIE SIECIOWE ...ttt ettt ettt et b e ens 697
Przyktad praktyCznycooooeieiiiiieee e e 702
WIHOSKI ittt ettt e e e e et e et e e e et e e e eeare e eeteeeeeaaeeeenaes 711
Zapewnianie pomocy, bezpieczenstwa,

pakowanie i rozpowszechnianiecc..ccovcrrcrrermesrmerrerrerresrenenns 713
ZAPEWNIANIC POIMOCY .vveuveerrerrerreerenseesesseessesseessessesssessesssessesseessessesssessesssessesssessesssenses 713

BEZPICCZENSTWO ...ttt ettt ettt sttt sttt s st bbb nenene 721
PAKOWANIEeveviieiiieiiieiceitetite ettt ettt ettt 725
ROZPOWSZEChNIANIEeouiiiiiiiiiiiiiie e 729
WIHOSKI .ttt sttt 730

SKOTOWIAZ ...veeireieirereiererereressssessasasesse s sasersssnsnnsasassasnssnsasnnsnnnnsnns 731

36

Excel. Programowanie dla profesjonalistow

Przyjrzyjmy si¢ przyktadowi, ktory pozwoli pokazaé, czym jest konwencja nazw. Co
mozesz wywnioskowacé o x z podanej nizej linii kodu?
x = wksDataSheet .Range("Al1") .Value

Ze sposobu uzycia mozesz rozsadnie wnioskowac, ze jest zmienna. Ale jaki typ wartosci
ma przechowywac? Czy jest to zmienna publiczna, czy o zasi¢gu na poziomie modultu,
czy moze zmienna prywatna? Do czego stuzy w programie? W podanej sytuacji nie
jeste$ w stanie odpowiedzie¢ na zadne z tych pytan, bez po$wigcenia nieco czasu na
przeszukanie kodu. Dobra konwencja nazw pozwala na odczytanie takich informa-
cji z samej nazwy zmiennej. Oto przyktad poprawiony (szczegoty zostang omowione
w nastgpnym podrozdziale).

glListCount = wksDataSheet.Range("Al").Value

Teraz juz znasz zakres zmiennej (g oznacza global — zmienna globalna, czyli inaczej
publiczna), wiesz, jaki typ danych ma przechowywac (1 oznacza Long) i masz ogdlne
pojgcie, do czego ta zmienna ma shuzy¢ (przechowuje liczbg elementow listy).

Konwencja nazw pomaga w szybkim rozpoznawaniu typu i celu uzycia blokéw, z ktorych
jest budowana aplikacja. To pozwala Ci koncentrowac si¢ raczej na zadaniach kodu
niz na jego strukturze. Konwencje nazw shuza takze samodokumentacji kodu, zmniej-
szajac liczbg komentarzy koniecznych do tego, aby byt zrozumiaty.

W nastgpnym podrozdziale pokazujemy przyktad konwencji nazw z przemyslana
struktura. Najwazniejsza sprawa jest jednak wybranie jednej konwencji i jej konse-
kwentne przestrzeganie. Jezeli wszyscy uczestniczacy w projekcie rozumieja przyjgta
konwencjg, nie ma wiasciwie znaczenia, jakie prefiksy sa uzywane lub jak i kiedy sa
stosowane litery wielkie i mate. Zasady przyjgtej konwencji powinny by¢ spdjne i kon-
sekwentnie, bez zmian stosowane nie tylko w pojedynczym projekcie, lecz rowniez
w dluzszym okresie czasu.

Przyktadowa konwencja nazw

Dobra konwencja nazw obejmuje nie tylko zmienne, lecz wszystkie elementy aplikacji.
Przykladowa, pokazana przez nas konwencja obejmuje wszystkie elementy typowe;j apli-
kacji Excela. Rozpoczniemy od dyskusji o zmiennych, stalych i zwiazanych z nimi ele-
mentach, gdyz to wlasnie one najczesciej wystepuja we wszelkich aplikacjach. W tabeli 3.1
pokazujemy ogdlny format konwencji nazw. Okreslone elementy i ich cele sg opisane dalej.

Tabela 3.1. Konwencja nazw zmiennych, statych, typow definiowanych przez uzytkownika i wyliczen

Element Konwencja nazw
Zmienne <zakres><tablica><typ danych>NazwaOpisowa
State <zakres><typ danych>NAZWA_OPTISOWA

Typy definiowane przez uzytkownika Type NAZWA_OPISOWA

<typ danych>NazwaOpisowa
End Type

Typ wyliczeniowy Enum <prefiks projektu>0pisOgolny

<prefiks projektu>0pisOgoInyNazwal
<prefiks projektu>0pisOgoTnyNazwa2
End Num

Rozdziat 3. ¢ Najlepsze praktyki programowania w Excelu i VBA 37

Okresinik zakresu (<zakres>)

g — PubTic (publiczny)
m— Module (na poziomie modutu)

(nic) — na poziomie procedury

Okresinik tablicy (<tablica>)

a — Array (tablica)

(nic) — nietablica

Okresinik typu danych (<typ danych>)

Istnieje tak wiele typow danych, ze trudno sporzadzi¢ zrozumiata listg odpowiadaja-
cych im prefikséw. Typy wbudowane sa proste. Problem powstaje przy nazywaniu
zmiennych obiektowych odnoszacych si¢ do obiektow z rdéznych aplikacji. Niektorzy
programisci stosuja prefiks obj dla wszystkich nazw obiektowych. Nie mozna na to
przysta¢. Jednakze obmyslenie zbioru spdjnych, niepowtarzajacych sig, racjonalnie
uzasadnionych i krotkich prefiksow, okreslajacych kazdy typ obiektu, jakiego kiedy-
kolwiek bedziesz uzywac, okazuje si¢ by¢ zadaniem nad sity. Staraj sig tworzy¢ jedno-,
dwu- i trzyliterowe rozsadnie uzasadnione prefiksy dla najczesciej uzywanych zmiennych
obiektowych, a prefiks obj zarezerwuj dla obiektéw rzadko pojawiajacych si¢ w kodzie.

Pisz kod przejrzysty, a przede wszystkim spdjny. Tworz prefiksy nie diuzsze niz trzylite-
rowe. Stosowanie dtuzszych w kombinacji z okre$lnikami zakresu i tablicy prowadzi
do tworzenia nazw nieporgcznie dhugich. W tabeli 3.2 zawarto list¢ sugerowanych
prefikséw dla najczgsciej uzywanych typow danych.

Stosowanie nazw opisowych

Cho¢ VBA pozwala na stosowanie nazw zmiennych o dtugosci do 255 znakéw, wy-
korzystuj jedynie niewielka czg$¢ dozwolonej dhugosci, ale nie len sig¢ i nie skracaj
nazw zmiennych zaledwie do kilku znakow. Robiac to, sprawisz, ze Twoj kod stanie
si¢ trudny do zrozumienia zwltaszcza po uptywie czasu i w przysztosci sprawi klopot
sobie lub innej osobie, ktora bedzie nad nim pracowac.

Zintegrowane srodowisko programistyczne Visual Basica (Visual Basic IDE — Inte-
grated Development Environment) posiada cechg autouzupehiania identyfikatorow
(wszystkich nazw uzywanych w aplikacji). Zwykle aby wstawi¢ nazwe, musisz napisaé
jedynie kilka pierwszych znakéw. Gdy po napisaniu kilku znakdéw naci$niesz Ctri+
spacja, ukaze si¢ lista autouzupetniania, zawierajaca wszystkie nazwy rozpoczynajace
si¢ od podanych znakéw. W miarg wpisywania kolejnych znakow lista bedzie sig skracaé.
Na rysunku 3.1 kombinacja Ctrl+spacja zostata uzyta do wyswietlenia listy statych
fancuchow komunikatow, jakie mozna doda¢ do pola komunikatu.

38 Excel. Programowanie dla profesjonalistow

Tabela 3.2. Prefiksy proponowane do uzycia w konwencji nazw

Prefiks Typ danych Prefiks Typ danych Prefiks Typ danych
b Boolean cm ADODB . Command cho MSForms . ComboBox*
byt Byte cn ADODB . Connection chk MSForms . CheckBox
cur Currency rs ADODB.Recordset cmd MSForms . CommandButton
dte Date ddn MSForms . ComboBox**
dec Decimal cht Excel.Chart fra MSForms . Frame
d DoubTe rng Excel.Range 1b1 MSForms . Label
i Integer wkb Excel.Workbook Ist MSForms.ListBox
1 Long wk's Excel.Worksheet mpg MSForms .MultiPage
obj Object opt MSForms.OptionButton
sng Single cbr Office.CommandBar spn MSForms.SpinButton
S String ctl O0ffice.CommandBar- txt MSForms . TextBox
Control
u User-defined
type - Typ
zdefiniowany
v Variant cls User-defined ref Kontrolka RefEdit
class variable -
odwotanie do klasy
frm UserForm col kolekcja, zbior

* Stosowane do kontrolek ComboBox typu DropDownCombo.
** Stosowane do kontrolek ComboBox typu DropDownl ist.

Rysunek 3.1.

-1':.;- Zeszytl - Modulel [Code]

Skrot klawiaturowy I[General) =] |AutoUzupeInianieDemo =l
. .

Cirl spac’]apoz.wa.la Option Explicit -

na autOMZupeh’llaﬂle Sub AutoTzupelnisnieDewa ()

dlugich nazw UsgBox gstSG

End Sub @ gsMSG_BEZ_STYLOW -
[l 1 sMSG_BE CZESMIEJSZEGO_FORMATO

E gsMSG_MINIMALMNE_DDTWARZAMIE

E gsMSG_NAZWY_NALOZONE

E 0sMSG_PODAJ_HASLO_ARKUSZA

) gsMSG_PODAI_HASLO_SKOROSZYTU

& gsMSG_WYCIYSC_STYL -

Kilka stow o statych typu wyliczeniowego

W Excelu 2000 i wersjach nowszych sa dostgpne state tzw. typu wyliczeniowego. Po-
zwalaja one na tworzenie listy spokrewnionych warto$ci i udostgpnienie ich przez lo-
gicznie uzasadnione, przyjazne dla uzytkownika nazwy. VBA i model obiektowy Excela
szeroko korzystaja z takich wyliczen. Mozesz to sprawdzi¢, korzystajac z autouzupet-
niania, na jakie pozwala VBA przy podawaniu wartosci wlasciwosci. Jezeli np. w mo-
dule VBA napiszesz:

Arkuszl.PageSetup.PaperSize =

Rozdziat 3. ¢ Najlepsze praktyki programowania w Excelu i VBA 39

zobaczysz dluga liste sktadowych typu wyliczeniowego podajaca réozne wymiary pa-
pieréw do drukowania (rysunek 3.2).

Rysunek 3.2. 4. Zeszyt] - Modulel [Code)
Lista wyliczajqca

I(General} j IWyIiczanieDemo j
dostepne
. . Option Explicit -
rozmiary papieru Sulb WyliczanieDemo ()
Arkuszl.Pag;Setup.PaperSize =
End Sub @ wPaper Dx14
E xlPapert1x1?
E xlPaperA3
E xIPaperad
E xlPaperAdSmall
E xIPaperas
E xlPaperB4
== | "z

Te nazwy w rzeczywistosci reprezentuja stale liczbowe, ktorych wartosci mozesz spraw-
dzi¢ za pomoca przegladarki obiektow (Object Browser), omdwionej w rozdziale 16.
Zwr6¢ uwage na strukturg nazw statych typu wyliczeniowego. Po pierwsze, wszystkie
rozpoczynaja si¢ od przedrostka identyfikujacego aplikacj¢ — w tym przypadku x1
oznacza Excela. Po drugie, poczatkowa czg$¢ nazwy jest opisowa, co wizualnie wiaze
ze soba nazwy nalezace do tego samego typu wyliczeniowego — w tym przypadku
jest to Paper. Ostatnia czg$cia nazwy wyliczeniowej jest unikatowy tancuch, opisuja-
cy specyficzna warto$é. Przyktadowo x1Paperl1x17 opisuje papier o formacie 11x7,
a x1PaperA4, odpowiednio papier o formacie A4. Taka konwencja nazw wyliczenio-
wych jest bardzo rozpowszechniona i zastosowano ja rowniez w tej ksiazce.

Przyktady stosowania konwencji nazw

Abstrakcyjne wyjasnienie zwiazku deskryptorow konwencji nazw z nazwami rze-
czywistymi jest trudne, wigc w tym podrozdziale pokazemy kilka praktycznych przy-
ktadow. Wszystkie pochodza wprost z komercyjnych aplikacji napisanych przez autorow.

Zmienne

4 gsErrMsg — zmienna publiczna (public variable) typu String uzywana
do przechowywania komunikatu o bledzie'.

4 mauSettings() — tablica na poziomie modutu typu zadeklarowanego
przez uzytkownika, uzywana do przechowywania parametrow (settings).

! Jezeli aplikacja ma by¢ uzywana jedynie w Polsce, warto stosowaé opisowe nazwy polskie. Jezeli
jednak nazwy odnosza si¢ do typoéw, narzedzi itp. sSrodowiska VBA (ktére pozostaje angielskie),
trzeba wystrzegac si¢ uzywania catkowicie niestrawnej mieszanki jezykowej, ktora moze okazaé si¢
zrozumiala jedynie dla autora. Warto wtedy stosowaé nazwy angielskie. Decyzja dotyczaca czgsci
opisowej bywa niekiedy trudna. Prosciej jest z przedrostkami okre$lajacymi zakres i typ zmiennych
badz statych, ktore warto uzaleznia¢ od angielskich nazw obiektow i typdw (np. zmienne musimy
deklarowac¢ jako Long i String, niezaleznie od naszych upodoban jezykowych). To pomieszanie
jezykow utrudnia opracowanie logicznej i przejrzystej konwencji nazw — przyp. thum.

40 Excel. Programowanie dla profesjonalistow

4 cbrMenu — lokalna zmienna typu CommandBar, przechowujaca odwotanie
do paska menu.

State

4 gbDEBUG_MODE — stata publiczna (public constant) typu boole’owskiego
wskazujaca, czy projekt dziata w trybie debugowania.

4 msCAPTION FILE OPEN — stata na poziomie modutu z wartoscig typu String,
przechowujaca tytul (caption) zdefiniowanego przez uzytkownika okna
otwierania plikow (w tym przyktadzie Application.GetOpenFilename).

4 10FFSET_START — stata lokalna z dang typu Long, przechowujaca punkt,
od ktorego obliczamy przesunigcie wzgledem jakiego$ obiektu typu Range.

Typy definiowane przez uzytkownika

Nizej zostat podany przyktad typu danych zdefiniowanych przez uzytkownika, maja-
cych stuzy¢ do przechowywania wymiaréw i potozenia obiektu. Nowy typ danych
sktada sig z czterech zmiennych typu Double, przechowujacych polozenie gory i lewe;j
strony obiektu, jego szeroko$¢ i wysoko$¢ oraz zmienna typu Boolean, stuzaca do
wskazywania, czy dane zostaly zapisane.

Public Type WYMIARY USTAWIENIA
bUstawieniaZapisane As Boolean
dWartGora As Double
dWartlLewa As Double
dWartWysokosc As Double
dWartSzerokosc As Double

End Type

Zmienne wewnatrz definicji typu uzytkownika nazywamy zmiennymi skladowymi
(member variables). Mozna je deklarowa¢ w dowolnej kolejnosci, jednakze w naszej
konwencji przyjmujemy kolejnos$¢ alfabetyczna wedlug typéw danych, jezeli tylko
nie wystepuja wazne powody grupowania zmiennych w inny sposob.

Typ wyliczeniowy

Ponizej zostat zdefiniowany typ wyliczeniowy na poziomie modutu stosowany do opisu
r6éznego rodzaju dni. Prefiks sch okresla nazwe aplikacji. W tym przypadku podane
wyliczenie pochodzi z aplikacji Scheduler. TypDnia jest czg$cia nazwy wskazujaca cel
tego typu wyliczeniowego, za$ indywidualne przyrostki pokazuja indywidualne znaczenie
kazdej sktadowej typu wyliczeniowego.

Private Enum schTypDnia
schTypDniaPozapTlanowy
schTypDniaProdukcyjny
schTypDniaPrzestojowy
schTypDnialWoTny

End Enum

Rozdziat 3. ¢ Najlepsze praktyki programowania w Excelu i VBA 41

Jezeli nie okreslisz warto$ci sktadowych typu wyliczeniowego, VBA automatycznie
przypisuje pierwszej sktadowej wartos¢ zero, a kolejnym sktadowym wartosci zwigk-
szane o jeden. Mozesz to tatwo zmieni¢, przypisujac inng wartos$¢ startowa, od ktorej
VBA rozpocznie inkrementacjg. Aby nakaza¢ VBA zwigkszanie wartosci od 1 zamiast
od zera, powiniene$ napisac:

Private Enum schTypDnia
schTypDniaPozaplanowy = 1
schTypDniaProdukcyjny
schTypDniaPrzestojowy
schTypDnialWoTny

End Enum

VBA rozpoczyna inkrementacje o jeden, zaczynajac od ostatniej okreslonej przez
Ciebie warto$ci. Mozesz uniemozliwi¢ automatyczne przypisywanie wartosci przez
proste ich okreslenie dla wszystkich sktadowych.

Na rysunku 3.3. pokazujemy jedna z korzysci, jakie daje stosowanie typu wyliczeniowego.
VBA dostarcza listg potencjalnych warto$ci dla kazdej zmiennej zadeklarowanej jako
nalezaca do danego typu wyliczeniowego.

Rysunek 3.3. 4. Zeszyt] - Modulel [Code)
Nawet C?eklarom./any I(General} j IUzycieWyIiczenia j
przez uzytkownika
. . . Option Explicit j
typ wyllczemowyjest
obslugiwanyprzez Public Sub UzycieWyliczenial)
autouzupelnianie VBA Dim ulzienBiezacy As schTypDnia
ubzienBiezacy =
End Sub @ schTypDniaPozaplanowy

E schTypDniaProdukeyjny
E schTypDniaPrzestojowy

Procedury

Znamy dwa typy procedur — procedury typu Sub (podprogramy) i funkcje. Zawsze
nadawaj procedurom nazwy opisowe. Powtarzamy ponownie, ze nazwy procedur mo-
ga mie¢ 255 znakow i rdwniez pojawiajq sig na listach autouzupeien wyswietlanych za
pomoca skrotu klawiszowego Ctri+spacja, zatem nie ma powodow, aby poswigcaé
dtuzsze nazwy opisujace cel procedury na rzecz innych, ktérych jedyna zaleta jest to,
ze sa krotkie.

Choc¢ nie jest to powszechna praktyka, uwazamy, ze poprzedzanie nazwy funkcji pre-
fiksem okreslajacym typ zwracanej danej jest przydatne i utatwia rozumienie kodu.
Wywotujac funkcje, zawsze po nazwie dajemy parg okraglych nawiasow dla odroz-
nienia od nazwy zmiennej lub procedury Sub i robimy to nawet wtedy, gdy funkcja nie
ma argumentéw. W listingu 3.1 pokazujemy dobrze nazwang funkcj¢ boole’owska,
uzyta jako test w instrukcji IT. .. Then.

42

Excel. Programowanie dla profesjonalistow

Listing 3.1. Przyklad funkcji nazwanej zgodnie z konwencjq nazw

If bWeryfikacjaSciezki("C:\P1iki") Then
"Jezeli podana Sciezka istnieje
'blok instrukcji If...Then jest wykonywany
End Sub

Podprogramy (procedury Sub) powinny otrzymywaé nazwy opisujace zadania, jakie
wykonuja. Przykladowo nazwa procedury ZamykanieAplikacji nie pozostawia wiele
watpliwosci dotyczacych wykonywanego zadania. Nazwy funkcji powinny opisywac
zwracane warto$ci. Mozemy oczekiwac, ze funkcja sPodajNieuzywanaNazweP1iku()
poda nazwe pliku.

Konwencja nazw stosowana do argumentow procedur jest taka sama, jak dla zmien-
nych na poziomie procedury, np. funkcja bWeryfikacjaSciezki pokazana w listingu
3.1 moze by¢ zadeklarowana w nastgpujacy sposob:

Function bWeryfikacjaSciezki(ByVal sSciezka As String) As Boolean

Moduty, klasy i formularze UserForm

Rysunek 3.4.
Moduty klas,
formularze UserForm
i moduty standardowe
posortowane w oknie | ™ ¥ CAppEventHandler
Project edytora VBA | FAbowt

W naszej przyktadowej konwencji nazw nazwy standardowych modutéow kodu po-
winny by¢ poprzedzane przedrostkiem M, moduly klas przedrostkiem C, za$ formularze
UserForm przedrostkiem F. Daje to — po zrezygnowaniu z wy$wietlania folderow —
dodatkowy, przyjemny efekt sortowania nazw w oknie Project edytora VBA, co zo-
stato pokazane na rysunku 3.4.

----- FTemplate

-2 MEBrowseForFolder

-y MCommandBars

«;‘;; MDatabccess

d&é MEnkryPoinks

422 MErrorHandler

5% MGlobals

22 MOpenClose

#ﬁé MPastePickure

-2 MatandardCode

488 MystemCode

88 MUtilities

3% Thisworkbook

1 wksCommandBars {wksCommandBars)
] whslISettings (wksUISettings) hd|

Ta konwencja ulatwia rozumienie kodu uzywajacego modutow klas i formularzy
UserForm. Podany nizej przyktad pokazuje, jak konwencja ulatwia rozpoznanie, ze
deklarowana jest zmienna obiektowa klasy okreslonego typu, a potem tworzony nowy
egzemplarz tej klasy.

Rozdziat 3. ¢ Najlepsze praktyki programowania w Excelu i VBA 43

Dim cl1sMojaKlasa As CMojaKlasa
Set clsMojaKlasa = New CMojaKlasa

Zawsze nazwa po lewej jest zmiennq typu danej klasy, za$ obiekt po prawe;j jest klasq.

Arkusze zwykte i arkusze wykresow

Poniewaz stosowane w kodzie nazwy (CodeNames) arkuszy zwyktych i arkuszy wykre-
sow uzytych w aplikacji sa przez VBA traktowane jako wewngtrzne zmienne obiek-
towe, powinny by¢ nadawane zgodnie z przyjeta konwencja nazywania zmiennych.
Nazwy arkuszy sa poprzedzane przedrostkiem wks (worksheet), ktory w kodzie bedzie
identyfikowat ich przynaleznos¢ do obiektow arkuszy. Odpowiednio nazwy arkuszy
wykresow (chart sheets) sa poprzedzane przedrostkiem cht, identyfikujacym je jako
przynalezne do obiektow typu wykres (chart).

W obu typach arkuszy po prefiksie powinna by¢ umieszczona nazwa opisowa, okre-
Slajaca cel arkusza w aplikacji. Przyktadowo na rysunku 3.4 wida¢ nazwe arkusza
wksCommandBars, zawierajacego tablicg definiujaca paski narzedziowe tworzone przez
aplikacj¢. W przypadku arkuszy zawartych w dodatkach oraz arkuszy ukrytych nazwy
podane na zaktadkach arkuszy powinny by¢ identyczne z nazwami kodowymi. Nazwy
,,zaktadkowe” arkuszy widocznych dla uzytkownika powinny by¢ dla niego przyjazne
1 zrozumiale, a poza tym musisz by¢ przygotowany, ze moga by¢ przez uzytkownika
zmienione. P6zniej dokladnie wyjasnimy, dlaczego wewnatrz kodu powiniene$ zaw-
sze polega¢ na kodowych nazwach arkuszy, a nie na ich nazwach ,,zakladkowych”.

Projekt VBA (VBA Project)

Zauwaz na rysunku 3.4, ze projekt VBA otrzymal t¢ sama nazwe¢ co skoroszyt z nim
powiazany. Zawsze powiniene$ projektowi VBA nadawaé nazwe pozwalajaca na
jasne zidentyfikowanie aplikacji, do ktdrej nalezy. Nie ma nic gorszego jak grupa
otwartych skoroszytow, ktorych wszystkie projekty maja w VBA domys$lna nazwe
VBAProject. Jezeli bedziesz chcial tworzy¢ odwotania migdzy projektami, bedziesz
musiat nada¢ im unikatowe nazwy.

Konwencje nazw interfejsu uzytkownika Excela

Elementy interfejsu uzytkownika Excela uzywane podczas tworzenia aplikacji powinny
rowniez otrzymywac nazwy zgodne z dobrze opracowang i spojna wewngtrznie konwen-
cja. W poprzednim podrozdziale omowilismy arkusze zwykte i arkusze wykresow. Trzy
nastgpne gltéwne elementy interfejsu uzytkownika Excela, jakie musimy omowic, to
ksztalty (obiekty shape), obiekty osadzone (embedded objects) i nazwy definiowane.

Ksztatty — obiekty Shape

Termin ksztalty (Shapes) okresla zbior, ktory moze zawiera¢ wiele roznorodnych obiek-
tow, jakie mozesz umieszcza¢ nad arkuszem lub arkuszem wykresu. Ksztatty mozemy
podzieli¢ ogdlnie na trzy gtowne kategorie: kontrolki, obiekty rysowane i obiekty

44

Excel. Programowanie dla profesjonalistow

osadzone. Ksztalty nalezy nazywac tak jak zmienne obiektowe, czyli zaczyna¢ nazwe
od prefiksu definiujacego typ obiektu, w dalszej czgsci podajac nazwe opisujaca cel,
jakiemu obiekt shuzy w aplikacji.

Wiele kontrolek umieszczanych w formularzu UserForm mozna rowniez sadowi¢ w arku-
szach. W arkuszu moga si¢ takze znalez¢ stare kontrolki z paska narzedzi Formularze,
ktore cho¢ podobne do kontrolek ActiveX MSForms, maja swe wtasne plusy i minusy,
co bardziej szczegodtowo zostalo omdéwione w rozdziale 4. Kontrolki umieszczane
w arkuszach powinny by¢ nazywane zgodnie z konwencja stosowana przy nazywaniu
kontrolek umieszczanych w formularzach.

Do arkuszy mozna takze wprowadza¢ wiele obiektow rysowanych (znanych pod tech-
niczna nazwa ksztattow), ktore — $cisle mowiac — nie sa kontrolkami, cho¢ mozna
do nich przypisywa¢ makra. Naleza do tej samej kategorii konwencji nazw, co wiele
obiektow uzywanych w VBA. Bytoby bardzo trudno okresli¢ dla nich jednoznaczne
przedrostki nazw, wigc uzywaj dobrze okreslonych przedrostkow dla obiektéw naj-
powszechniej uzywanych, a dla reszty stosuj przedrostki standardowe. Oto przyktadowe
przedrostki dla trzech powszechnie uzywanych obiektow rysunkowych:

pic Picture Obraz.
rec Rectangle Prostokat.
txt TextBox (ale nie kontrolka ActiveX) Pole tekstowe.

Obiekty osadzone (Embedded Objects)

Termin obiekty osadzone jest tu uzywany w odniesieniu do obiektow Excela, takich
jak tabele przestawne (PivotTables), tabele zapytan (QueryTables) i wykresy (Chart-
Objects), jak rowniez obiekty kreowane przez aplikacje rézne od Excela. Arkusze
moga przechowywac wiele réznych osadzonych obiektow. Znanym przykladem obiektow
osadzonych w arkuszu, ktore nie powstalty w Excelu, sa rownania tworzone przez
edytor rownan (Equation Editor) oraz rysunki, ktére powstaja za pomoca WordArt. Oto
przykladowe przedrostki dla nazw obiektoéw osadzonych:

cht ChartObject Wykres.

egn Equation Réwnanie.

ary QueryTable Tabela zapytania.
pvt PivotTable Tabela przestawna.
art WordArt WordArt.

Nazwy definiowane

W naszej konwencji nazwy definiowane sa traktowane nieco inaczej niz inne ele-
menty. W przypadku nazw definiowanych przedrostek powinien szeroko okreslac cel
definiowanej nazwy, a nie typ danych, jakie maja by¢ przechowywane. W aplikacjach
Excela, poza najprostszymi, wystgpuje wiele nazw definiowanych i ich grupowanie

Rozdziat 3. ¢ Najlepsze praktyki programowania w Excelu i VBA 45

wedtug celu w oknie dialogowym Definiowanie nazw (Definiuj nazwy — w wersjach
starszych niz Excel 2003) znacznie utatwia pracg. Jezeli arkusz zawiera dziesiatki lub
setki nazw definiowanych, takie pogrupowanie funkcjonalne przez zastosowanie odpo-
wiednich przedrostkow przynosi widoczne korzysci.

Opisowa cz¢$¢ nazwy zdefiniowanej doktadne okre$la, do czego ta nazwa stuzy w ramach
szerszej kategorii. Na podanej nizej liscie widzimy kilka przedrostkow celu nazw defi-
niowanych.

cht Chart data range Zakres danych wykresu.

con Named constant Nazwana stata.

err Error check Znacznik btedu.

for Named formula Nazwana formuta.

inp Input range Zakres wejsciowy.

out Output range Zakres wyjsciowy.

ptr Specific cell location Okreslony adres komorki.

rgn Region Obszar (zakres).

set Ul setting (User Interface) Ustawienie interfejsu uzytkownika.
thl Table Tabela.

Wyjatki — kiedy nie stosuje sie konwencji nazw

W dwoch przypadkach zechcesz ztama¢ ogolna konwencjg nazw. Po pierwsze, gdy
masz do czynienia z elementami dotyczacymi wywotan Windows API. Elementy te
zostaly nazwane przez Microsoft 1 sa szeroko znane w spolecznosci programistow.
Statle Windows API, typy deklarowane przez uzytkownika, deklaracje i argumenty
procedur powinny pojawiac si¢ w kodzie doktadnie w takiej postaci, w jakiej znajdu-
jemy je w SDK? dla platformy Microsoftu (Microsoft Platform SDK), co mozemy
sprawdzi¢ w serwisie internetowym MSDN pod adresem:

http://msdn.microsoft.com/library/
en-us/winprog/winprog/windows_api_start.page.asp

Zauwaz, ze sa to odwotania w formacie C/C++.

Drugim przypadkiem, gdy nie zechcesz uzy¢ wtasnej konwencji nazw, jest stosowa-
nie kodu pochodzacego ze zrodel zewnetrznych, stuzacego do realizacji specjalnych
zadan. Jezeli zmodyfikujesz nazwy w tej czgsci kodu i bedziesz si¢ do nich odwoty-
waé w reszcie aplikacji, ewentualna aktualizacja wstawki, jezeli pojawi si¢ jej nowa
wersja, bedzie bardzo trudna.

? SDK (Software Development Kit) — zestaw narzgdzi programistycznych przydatny przy tworzeniu
wiasnych aplikacji dla okres$lonych platform sprzgtowych i systemowych — przyp. thum.

46

Excel. Programowanie dla profesjonalistow

Najlepsze praktyki organizacji
i tworzenia struktury aplikacji

Struktura aplikacji

Aplikacja jednoskoroszytowa, a aplikacja n-skoroszytowa

Liczba skoroszytow uzytych w aplikacji Excela zalezy przede wszystkim od dwoch
czynnikdéw: ztozono$ci samej aplikacji i ograniczen nalozonych przez warunki dystry-
bucji i aktualizacji wersji. Aplikacje proste i takie, dla ktorych nie mozna wymusié¢
okreslonej kolejnosci dziatan instalacyjnych, wymagaja mozliwie najmniejszej liczby
skoroszytow. Aplikacje ztozone i takie, ktorych procesem instalacyjnym mozna w pehi
sterowac, moga by¢ dzielone na wiele skoroszytow lub plikéw innego typu, np. DLL.
W rozdziale 2. zostaly oméwione rézne typy aplikacji Excela i odpowiednie dla nich
struktury.

Jezeli mozesz swobodnie dzieli¢ aplikacjg na pliki wedlug wlasnego uznania, wiele
przemawia za tym, aby to czyni€. Przyczyny, jakie warto bra¢ pod uwagg, to: podziat
aplikacji na warstwy logiczne, oddzielenie kodu od danych, oddzielenie elementow
interfejsu uzytkownika od kodu, hermetyzacja funkcjonalnych elementéw aplikacji i nad-
z6r nad konfliktami wynikajacymi ze zmian przy pracy zespotowe;.

Rozdzielenie warstw logicznych

Niemal kazda nietrywialna aplikacja Excela ma trzy wyrazne logiczne warstwy czy
sekcje. Sa to:

4 Warstwa interfejsu uzytkownika. Warstwa ta sktada si¢ z kodu i widocznych
elementdw potrzebnych aplikacji do interakcji z uzytkownikiem. W aplikacji
Excela warstwa interfejsu ma czg$¢ widoczna, do ktdrej naleza elementy, takie
jak arkusze, wykresy, paski narzedziowe, formularze uzytkownika oraz
niewidoczna, ktdra stanowi kod potrzebny do sterowania elementami widocznymi.
Warstwa interfejsu uzytkownika jest jedyng warstwa logiczna zawierajaca
elementy widoczne dla uzytkownika.

4 Warstwa logiki biznesowej (warstwa aplikacji). Warstwa logiki biznesowe;j
to w calosci kod, ktory wykonuje zadania zasadnicze, dla ktorych cata aplikacja
zostata zaprojektowana i napisana. Warstwa logiki biznesowej akceptuje dane
wejsciowe, pochodzace z warstwy interfejsu uzytkownika i tamze zwraca
wyniki. W przypadku operacji dtugo trwajacych warstwa logiki biznesowej
przekazuje do warstwy interfejsu uzytkownika okresowe informacje w postaci
komunikatéw statusu lub paska wskazujacego stopien wykonania zadania.

4 Warstwa dostepu i przechowywania danych. Warstwa dostgpu i przechowywania
danych jest odpowiedzialna za przechowywanie i dostarczanie na zadanie
danych potrzebnych aplikacji. Moze to by¢ tak proste, jak odczytywanie

Rozdziat 3. ¢ Najlepsze praktyki programowania w Excelu i VBA 47

danych z komorek i ich zapisywanie w komorkach lokalnego lub ukrytego
arkusza czy tak skomplikowane, jak egzekucja przez sie¢ procedur na serwerze
bazodanowym (SQL Server). Warstwa dostgpu i przechowywania danych
komunikuje sig¢ bezposrednio jedynie z warstwa logiki biznesowe;.

Na rysunku 3.5 mozesz zobaczy¢, ze wszystkie trzy warstwy sa konieczne do stwo-
rzenia kompletnej aplikacji, ale nie musza by¢ ze soba nierozerwalnie powiazane.
Trzy warstwy sa luzno taczone i istotna zmiana w jednej nie musi wymagac istotnej
zmiany w innej. Silne wigzanie warstw aplikacji w sposob nieunikniony komplikuje
jej konserwacje 1 uaktualnianie.

Rysunek 3.5. T

Relacje miedzy Aplikacja Excela

Zrze.ma waf’stwaml Warstwa Watstwia Warstwa dostepu
logicznymi interfejsu P logiki bizn P i przechowywania
aplikacji Excela uzytkownika Rgi biicsonie] danych

Jezeli np. warstwa dostepu i1 przechowywania danych wymaga zmiany dotychczaso-
wej bazy accessowe] na bazg danych na SQL Servera, wszelkie zmiany dotycza je-
dynie tej warstwy. W dobrze zaprojektowanej aplikacji zadna z dwoch pozostatych
warstw nie powinna by¢ tknigta podczas wprowadzania potrzebnych zmian. W sytu-
acji idealnej dane migdzy warstwa dostgpu i przechowywania danych a warstwa logiki
biznesowej powinny by¢ przekazywane w postaci zmiennych o typie zdefiniowanym
przez uzytkownika. To pozwala na najlepsze zréwnowazenie efektywnos$ci i swobody
powiazania. Alternatywnie mozna stosowac obiekty ADO Recordset, ale to wprowa-
dza subtelne problemy powiazan, takie jak kolejno$¢ pol zwracanych z bazy danych,
od czego lepiej nie uzaleznia¢ warstwy logiki biznesowe;j.

I podobnie, jezeli aplikacja ma zawiera¢ alternatywny internetowy interfejs prezenta-
cyjny, swobodne powiazanie warstwy interfejsu uzytkownika z warstwa logiki biznesowej
ulatwi Ci wykonanie tego zadania. Bedzie ono tatwiejsze z powodu braku niejawnych
zatozen wbudowanych w warstwe logiki biznesowej oraz zalozen dotyczacych kon-
strukcji interfejsu uzytkownika. Elementy akceptujace dane wprowadzane przez uzyt-
kownika powinny by¢ w pelni niezalezne i samowystarczalne. Warstwa logiki bizne-
sowej musi przekazywac interfejsowi uzytkownika potrzebne dane inicjalizacyjne
jako dane o prostych wiasciwosciach. Interfejs uzytkownika powinien zbiera¢ dane wpro-
wadzane przez uzytkownika i przekazywac je wstecz do warstwy logiki biznesowej
rowniez jako dane o prostych wlasciwosciach lub, w przypadkach bardziej ztozonych,
jako dane o typie zdefiniowanym przez uzytkownika (UDT User [defined] Data Type).
Poniewaz warstwa logiki biznesowej nie powinna zawiera¢ zadnych wewngtrznych
informacji o konstrukcji interfejsu uzytkownika, bezposrednie odwotania z warstwy
logiki biznesowej do kontrolek formularza uzytkownika sa zakazane.

Oddzielenie danych i interfejsu uzytkownika od kodu

W wielu aplikacjach uzytkownika wewnatrz warstwy interfejsu uzytkownika bywaja
stosowane dwie podwarstwy. Stanowia je skoroszyt i elementy arkusza uzywane do
budowania interfejsu oraz kod obstugujacy te elementy. Podziat na podwarstwy musi

48

Excel. Programowanie dla profesjonalistow

by¢ tu rygorystycznie przestrzegany. Interfejs uzytkownika korzystajacy z arkusza nie
powinien zawiera¢ zadnego kodu, za$§ kod kontrolujacy ten interfejs nalezy umiescié
w catkowicie oddzielonym dodatku.

Powod tej separacji jest doktadnie taki sam, jak opisany poprzednio dla separacji glow-
nych warstw logicznych aplikacji — jest to izolacja efektoéw wprowadzanych zmian.
Ze wszystkich warstw aplikacji najczesciej zmieniana jest warstwa interfejsu uzyt-
kownika. Dlatego nie jest wystarczajace oddzielenie jej w cato$ci i nalezy odseparowaé
takze zmiany widocznych elementéw interfejsu uzytkownika od kodu te elementy
kontrolujacego.

W nastgpnych rozdziatach podamy wzigte z zycia przyktady oddzielenia warstw apli-
kacji, wigc nie przejmuj si¢, jezeli teraz jakis element dyskusji nie jest dla Ciebie w petni
zrozumiaty.

Organizacja aplikacji
w programowaniu proceduralnym

Programowaniem proceduralnym nazywamy metodologie programowania znang
wigkszos$ci tworcow oprogramowania. Polega ona na dzieleniu aplikacji na wiele pro-
cedur, z ktorych kazda wykonuje oddzielne zadanie. Cata aplikacja moze zosta¢ napi-
sana w ten sposob, a elementy proceduralne moga by¢ kombinowane z elementami
zorientowanymi obiektowo lub cata aplikacja moze zosta¢ napisana metoda zorientowana
obiektowo. W tym podrozdziale skupiamy uwage na najlepszych praktykach progra-
mowania proceduralnego. Techniki programowania obiektowo zorientowanego omo-
wimy w rozdziale 7.

Organizowanie kodu w moduty za pomoc3a funkcji (kategorii)

A

Gléwnym powodem dzielenia kodu na moduly jest zwigkszenie jego przejrzystosci
i utatwienie p6zniejszego utrzymania aplikacji. W aplikacji proceduralnej procedury
powinny by¢ umieszczane w oddzielnych modutach, zgodnie z logika dziatania. W mo-
dufach najlepiej grupowac procedury petniace podobne funkcje.

VBA ma nieudokumentowane ,miekkie ograniczenie” maksymalnego rozmiaru
standardowego modutu, ktérego wielkoS¢ nie powinna przekraczaé 64 kB, przy
czym wielko$¢ ta dotyczy pliku tekstowego eksportowanego z projektu (narzedzia
VBE, zapisane na ptycie CD, automatycznie podajg wielko§¢ modutu). Twéj projekt
nie zatamie sie natychmiast, gdy pojedynczy modut przekroczy wielkoS¢ 64 kB,
lecz ciggte przekraczanie tej granicy niemal na pewno doprowadzi do niestabilnosci
aplikacji.

Funkcjonalna dekompozycja

Funkcjonalna dekompozycja to proces dzielenia aplikacji na oddzielne procedury w taki
sposob, aby kazda odpowiadata za wykonanie pojedynczego zadania. Teoretycznie wiele
aplikacji moglby$ pisa¢ w postaci wielkich, pojedynczych, monolitycznych procedur.

Rozdziat 3. ¢ Najlepsze praktyki programowania w Excelu i VBA 49

Jednak takie postgpowanie znacznie utrudniatoby proces debugowania i pdzniejszego
utrzymania aplikacji. Stosujac funkcjonalna dekompozycje, planujesz aplikacje tak,
by sktadala si¢ z wielu procedur, z ktorych kazda bedzie odpowiedzialna za $cisle
okreslone zadanie, tatwe do zrozumienia, weryfikacji, udokumentowania i utrzymania.

Najlepsze praktyki tworzenia procedur

Zrozumialy zestaw wskazowek opisujacych wlasciwy sposob tworzenia procedur z fa-
twoscia wypelnitby caty rozdziat. Nizej podamy jedynie list¢ najwazniejszych.

4 Hermetyzowanie (enkapsulacja). Jezeli tylko jest to mozliwe, procedura
powinna by¢ zaprojektowana tak, aby zapewni¢ peing hermetyzacje
wykonywanej operacji. Oznacza to np., ze odpowiednio hermetyzowana
procedura moze zosta¢ skopiowana do kompletnie réznego projektu, gdzie
bedzie dziata¢ rownie dobrze, jak w projekcie, w ktorym powstata. Hermetyzacja
pomaga w wielokrotnym stosowaniu kodu, a dzigki logicznemu odizolowaniu
operacji upraszcza debugowanie.

4 Eliminowanie duplikowaniu kodu. Piszac nietrywialna aplikacj¢ Excela,
czgsto bedziesz odkrywal, ze juz w wielu miejscach pisates kod wykonujacy
t¢ sama operacjg. Jezeli to odkryjesz, powiniene§ wydzieli¢ powtarzajacy sig
kod, tworzac oddzielna procedurg. Czyniac to, zmniejszysz liczbg miejsc,
gdzie ta szczegdlna operacja musi by¢ weryfikowana lub modyfikowana.
Wspolna procedura moze by¢ modyfikowana tylko w jednym miejscu aplikacji.
Wszystko to prowadzi do znacznego podniesienia jakosci kodu. Stuzy to
réwniez drugiemu waznemu celowi — wielokrotnej stosowalnosci kodu.
Jezeli powszechnie stosowane operacje wydzielisz w oddzielnych procedurach,
przekonasz sig, ze bedziesz mogt te procedury wykorzysta¢ w wielu innych
aplikacjach. Taki kod tworzy rodzaj biblioteki, ktorej mozesz uzywac w celu
podniesienia wlasnej produktywnosci przy pisaniu nastgpnych aplikacji.
Im wigcej logicznie oddzielonych operacji zapiszesz w postaci kompletnych,
w pelni przetestowanych procedur bibliotecznych, tym mniej czasu bedzie Ci
zajmowacé tworzenie kolejnych aplikacji.

4 Izolowanie zlozonych operacji. W wicelu rzeczywistych aplikacjach
znajdziesz sekcje logiki biznesowej bardzo ztozone i bardzo specyficzne
dla danej aplikacji, dla ktérej zostaty zaprojektowane, co oznacza takze
niemozliwos$¢ powtdrnego ich uzycia w innych projektach. Takie sekcje
nalezy izolowa¢ w oddzielnych procedurach w celu utatwienia debugowania
i dalszego utrzymania.

4 Redukcja rozmiaréw procedury. Zbyt dlugie procedury sa trudne do
zrozumienia, debugowania i utrzymania nawet dla programistow, ktorzy je
napisali. Jezeli odkryjesz procedurg liczaca ponad 150 lub 200 linii kodu,
przekonasz si¢, ze zwykle wykonuje ona kilka zadan, a wigc powinna by¢
podzielona na kilka jednocelowych procedur.

4 Ograniczanie liczby argumentéw procedury. Im wigcej argumentow
procedura akceptuje, tym trudniej ja zrozumie¢ i mniej efektywnie bedzie
uzywana. W zasadzie powiniene$ ogranicza¢ liczbg argumentéw do pigciu

50

Excel. Programowanie dla profesjonalistow

lub mnie;j. I nie stosuj prostego zastgpowania argumenté6w procedur przez
zmienne publiczne lub dostgpne na poziomie modutu. Jezeli okaze sig, ze
procedura wymaga wigcej niz pigciu argumentdw, bedzie to znak, ze sama
procedura lub logika aplikacji powinny zosta¢ ponownie zaprojektowane.

Najlepsze praktyki okreslajace ogolne
zasady tworzenia oprogramowania

W tym podrozdziale sa omawiane najlepsze praktyki dziatania wspolne dla wszystkich
obszarow i etapéw tworzenia aplikacji. Wigkszo$¢ dalszych rozdzialow zaleca stoso-
wanie najlepszych praktyk odnoszacych si¢ do tematéw poruszonych w tym rozdziale.

Komentowanie kodu

Dobre komentowanie kodu to najwazniejsza z dobrych praktyk tworzenia aplikacji
Excela. Komentarze powinny w sposob prosty i kompletny objasniaé, jak kod jest
zorganizowany, w jaki sposob kazdy obiekt i procedura powinny by¢ uzywane oraz
jaki byt cel napisania danego kodu. Komentarze stuza takze do zaznaczania zmian
dokonywanych wraz z uptywem czasu, ale tym tematem zajmiemy si¢ w dalszej czgsci
tego rozdziatu.

Komentarze kodu sa wazne zaré6wno dla Ciebie, jak i dla innych programistow, ktorzy
— by¢ moze — bgda nad Twoim kodem pracowali. Przydatno$¢ komentarzy dla in-
nych zdaje si¢ by¢ oczywista. To, czego mozesz sobie nie uswiadamia¢ do czasu
otrzymania pierwszej okrutnej lekcji, to przydatno$¢ komentarzy dla Ciebie. Czgsto sig¢
zdarza, ze po napisaniu pierwszej wersji kodu, po uptywie jakiego$ czasu jego tworcy
sa proszeni o dokonanie istotnych zmian. Mozesz by¢ wtedy zaskoczony, jak obcy
wyda Ci si¢ wlasny kod, nieogladany od dluzszego czasu. Komentarze pomagaja radzi¢
sobie z tym problemem.

Komentarze powinny by¢ stosowane we wszystkich trzech glownych poziomach kodu
aplikacji: na poziomie modutu, procedury i pojedynczych sekcji Iub linii kodu. Oméwimy
dalej typy komentarzy odpowiednie dla tych wszystkich poziomow.

Komentarze na poziomie modutu

~

Jezeli uzytes, opisanej wczesniej w tym rozdziale, konwencji nazywania modutow,
kazdy sprawdzajacy kod bedzie miat z grubsza pojecie o celu kodu zawartego w module.
Powinienes$ to wesprze¢ krotkim komentarzem na poczatku kazdego modutu, gdzie
zawrzesz doktadniejszy opis celu kodu zapisanego w module.

Gdy méwigc o komentarzach, uzywamy terminu moduf, okreSlamy nim moduty
standardowe, moduty klas i moduty kodu zwigzanego z formularzami uzytkownika.

Rozdziat 3. ¢ Najlepsze praktyki programowania w Excelu i VBA 51

Dobry komentarz na poziomie modutu powinien by¢ umieszczony na samym poczatku
i wygladac tak, jak przyktad pokazany w listingu 3.2.

Listing 3.2. Przykiadowy komentarz na poziomie modutu

' Opis: Krotki opis celu kodu
' zapisanego w tym module.

'

Option Explicit

Komentarze na poziomie procedury

Zwykle komentarze na poziomie procedury sa najdoktadniejszymi komentarzami w calej
aplikacji. Tam opisujesz cel procedury, uwagi o jej uzywaniu, szczegdtowa listg ar-
gumentow i informacje o celu ich uzycia oraz — w przypadku funkcji — oczekiwana
zwracang warto$¢. Komentarze na poziomie procedury moga takze stuzy¢ jako pod-
stawowe narzedzie rejestrowania zmian, gdzie mozna podawaé daty i opisy zmian
wprowadzanych w procedurze. Dobry komentarz na poziomie procedury, taki jak po-
kazany w listingu 3.3, moze by¢ umieszczony bezposrednio nad pierwsza linia kodu
procedury. Komentarz w listingu 3.3 zostal napisany dla funkcji. Komentarz dla pro-
cedury typu Sub od komentarza dla funkcji rozni si¢ jedynie brakiem bloku Zwraca
(Returns), gdyz — jak wiadomo — procedury tego typu nie zwracaja zadnych wartosci.

Listing 3.3. Przykiadowy komentarz na poziomie procedury

I I I A A I R R R S B A R A R R A A A R R R S A B B R R A O B B AR RN SR O SR AR BB RR A SR AR AN

' Komentarze: Lokalizuje wykres, ktory ma by¢
obiektem dzialania lub - jezeli
wykresow jest wiele - prosi

o wybranie wlasciwego.

Argumenty: chtWykres Wartos¢ zwracana przez
funkcje. Odwotanie do
wykresu, na ktorym ma by¢
wykonane dziatanie lub
nic, jezeli uzytkownik
anuluje dziatanie.

Zwraca: Boolean Prawda — gdy powodzenie,
' Falsz— gdy blqd lub

anulowanie przez

uzytkownika.

Data Programista Drzialanie.

' 04/07/02 Rob Bovey Utworzenie.

' 14/10/03 Rob Bovey Wychwytywanie bledu,
gdy wykres bez serii.

' 18/11/03 Rob Bovey Wychwytywanie bledu,
gdy brak aktywnego
arkusza.

52 Excel. Programowanie dla profesjonalistow

Komentarze wewnetrzne

Komentarze wewngtrzne sg umieszczane wewnatrz samego kodu, aby opisa¢ jego cel,
jezeli ten moze si¢ zdawaé nieoczywisty. Powinny opisywacé raczej intencje kodu niz
wykonywane operacje. Rozrdznienie intencji i operacji nie zawsze jest jasne, wigc
w listingach 3.4 1 3.5 podali$my dwa przyktady tego samego kodu, odpowiednio ze
ztym i dobrym komentarzem.

Listing 3.4. Przykiad zlego wewnetrznego skomentowania kodu

' Petla tablicy asPlikiWejsciowe
For TIndex = LBound(asPTikiWejsciowe) To UBound(asPlikiWejsciowe)

Next 1Index

Komentarz w listingu 3.4 jest catkowicie nieprzydatny. Po pierwsze, przede wszyst-
kim opisuje jedynie lini¢ kodu znajdujaca si¢ bezposrednio ponizej, nie dajac zadnej
informacji o celu catej petli. Po drugie, komentarz jest jedynie doktadnym opisem tej
linii. Jest to informacja, jaka tatwo uzyskaé, rzucajac okiem na lini¢ kodu. Usunigcie
komentarza pokazanego w listingu 3.4 nie przyniesie zadnej szkody.

Listing 3.5. Przykiad dobrego wewnetrznego skomentowania kodu

' Import okreslonej listy plikow wejsciowych
' do obszaru roboczego arkusza danych.
For TIndex = LBound(asPTikiWejsciowe) To UBound(asPlikiWejsciowe)

Next 1Index

Komentarz z listingu 3.5 wnosi do kodu nowa wartos¢. Nie tylko opisuje intencj¢ za-
miast operacji, lecz rowniez wyjasnia strukturg petli. Po przeczytaniu tego komentarza
bedziesz wiedzie¢, czego masz szukac, szperajac w kodzie wngtrza petli.

Ale od kazdej zasady sa wyjatki, wigc rowniez podana wczesniej zasada tworzenia
komentarzy wewnatrz kodu nie zawsze obowiazuje. Najwazniejsze odstgpstwo dotyczy
komentarzy majacych objasniac struktury sterujace. Instrukcje If...TheniDo...Loops
w miarg rozbudowy czynia kod trudniejszym do zrozumienia, gdyz staje si¢ niemoz-
liwe $ledzenie go w jednym oknie. Trudno wowczas pamigtac, do jakiego miejsca
kodu jest przekazywane sterowanie aplikacja. Przyktadowo podczas testowania dtu-
giej procedury czgsto trafiamy na co$ takiego, co wida¢ na wyimku listingu pokazanym
w listingu 3.6.

Listing 3.6. Trudna do sledzenia struktura sterujqca

End If
1LiczbaPlikowWejsc = 1LiczbaPlikowlWejsc - 1
Loop

End If

Rozdziat 3. ¢ Najlepsze praktyki programowania w Excelu i VBA 53

Z listingu 3.6 nie mozna odczytac, jakie testy logiczne steruja dwiema instrukcjami
If...Then oraz jakie wyrazenie steruje petla Do. . .While. Po wypetnieniu tych struktur
rzeczywistym kodem nie bedzie mozliwe znalezienie odpowiedzi na powyzsze pytania bez
przewijania listingu tam i z powrotem, gdyz caly blok przestanie by¢ widoczny w jednym
oknie kodu. Mozesz tatwo zmniejszy¢ t¢ niedogodnos¢, dodajac komentarze w stylu
tych, ktore zostaty pokazane w listingu 3.7.

Listing 3.7. Zrozumiala struktura sterujqca

End If ' IfbZawartoscWazna Then
1LiczbaPTlikowWejsc = TLiczbaPlikowWejsc - 1
Loop ' Do While ILiczbaPlikowWejsc > 0

End If ' If bPlikiWejscZnalezione Then

Cho¢ komentarze w listingu 3.7 sa jedynie powtdrzeniem kodu, przyczepionym do in-
strukcji konczacych struktury sterujace, dzigki nim sens tych struktur staje si¢ jasny
1 oczywisty. Tego typu komentarzy nalezy uzywaé wszgdzie tam, gdzie struktury ste-
rujace sg zbyt rozciagnigte, aby mozna je bylo obejrze¢ w jednym oknie kodowym.

Unikanie najgorszego btedu komentowania kodu

Problem jest oczywisty, mimo to jednak najpowazniejszym, najczgstszym i najbardziej
szkodliwym btedem komentowania jest brak aktualizacji komentarzy przy modyfi-
kacji kodu. Czgsto spotykamy projekty na pierwszy rzut oka przygotowane zgodnie
z dobra praktyka komentowania kodu, w ktorych po blizszym sprawdzeniu okazuje
si¢, ze komentarze dotycza jakiej$ pierwotnej wersji projektu i ich zwiazek z wersja
biezaca jest niemal zaden.

Jezeli staramy si¢ zrozumie¢ kod, btedne komentarze sg gorsze niz ich brak, gdyz
prowadza na mylne $ciezki. Dlatego zawsze aktualizuj komentarze, za$ stare albo kasuj,
albo utrzymuj w formie pozwalajacej $ledzi¢ ciag wprowadzanych kolejno zmian.
Zalecamy kasowanie nieaktualnych komentarzy wewnatrz kodu, aby unikna¢ za$mie-
cania go nieprzydatnymi informacjami, bowiem nadmiar linii komentujacych sprawia,
ze kod jest trudny do zrozumienia.

Do §ledzenia wprowadzanych zmian uzywaj komentarzy na poziomie procedury.

Czytelnos¢ kodu

Czytelno$¢ kodu jest funkcja jego fizycznego uktadu. Dobry wizualny rozktad kodu
pozwala na proste wnioskowanie znacznej ilosci informacji o logicznej strukturze
programu. To sprawa kluczowa. Dla komputera rozktad kodu nie ma zadnego zna-
czenia. Jedynym celem jest utatwienie zrozumienia kodu ludziom. Tak samo jak
konwencja nazw, rowniez spojna i dobra konwencja rozktadu kodu jest rodzajem sa-
modokumentacji. Podstawowym narzedziem rozktadu kodu jest puste miejsce (white

54 Excel. Programowanie dla profesjonalistow

space). Pustymi miejscami sg znaki spacji, tabulatory i puste linie. W nastgpnych
akapitach omoéwimy najwazniejsze sposoby uzywania pustych miejsc w celu zbudo-
wania dobrze zaprojektowanego rozktadu kodu.

Grupuj spokrewnione elementy kodu, za§ elementy niemajace ze soba zwiazku od-
dzielaj pustymi liniami. Mozna uznaé, ze sekcje kodu procedury oddzielone pustymi
liniami pelnia taka sama role, jak akapity w tekscie ksiazki. Pozwalaja okresli¢, co
jest ze sobg powiazane. W listingu 3.8 widzimy przyktad pokazujacy, jak puste linie
zwigkszaja czytelno$¢ kodu. Nawet bez dodawania komentarzy wiadomo, ktore linie
kodu sa ze soba powiazane.

Listing 3.8. Uzycie pustych linii do grupowania kodu w sekcje

' Ustawianie wilasciwosci aplikacji.
Application.ScreenUpdating = True
Application.DisplayAlerts = True
Application.EnableEvents = True
Application.StatusBar = False
AppTication.Caption = Empty
Application.EnableCancelKey = x1Interrupt
Application.Cursor = x1Default

' Usuwanie wszystkich paskow narzedziowych uzytkownika.
For Each cbrBar In Application.CommandBars
If Not cbrBar.BuiltIn Then
cbrBar.Delete
Else
cbrBar.Enabled = True
End If
Next cbrBar

' Przywrécenie paska menu arkusza.
With Application.CommandBars(1)

.Reset

.Enabled = True

Visible = True
End With

Wewnatrz sekcji spokrewnionych linii zwiazek poszczegdlnych grup pokazujemy za
pomoca wyrownania. Wcigcia stuza do pokazania logicznej struktury kodu. W listingu
3.9 demonstrujemy jedna sekcje listingu 3.8, gdzie wyréwnania i wcigcia daja dobry
efekt. Przygladajac si¢ temu fragmentowi kodu, od razu zrozumiesz, ktore elementy
tworza caloéci oraz rozpoznasz logiczny bieg wykonywanego kodu.

Listing 3.9. Wlasciwe uzycie wyréwnania i wcieé

' Usuwanie wszystkich paskéw narzedziowych uzytkownika.
For Each cbrBar In Application.CommandBars
If Not cbrBar.BuiltIn Then
cbrBar.Delete
Else
cbrBar.Enabled = True
End If
Next cbrBar

Rozdziat 3. ¢ Najlepsze praktyki programowania w Excelu i VBA 55

W celu ulatwienia czytania kodu dhugie instrukcje i deklaracje dzielimy za pomoca
znaku kontynuacji linii. Pamigtaj, Zze dzielenie kodu w ten sposob jedynie dla poka-
zywania catych linii bez koniecznos$ci przewijania okna niekoniecznie musi by¢ dobra
praktyka. W listingu 3.10 wida¢ przyktad rozsadnego stosowania kontynuacji linii.

Listing 3.10. Rozsqdne stosowanie kontynuacji linii

' Zlozone wyrazenia latwiej zrozumied,

' Jjezeli sq wlasciwie kontynuowane.

If (uData.lMaxLocationLevel > 1) Or _
uData.bHasClientSubsets Or _
(uData.uDemandType = bcDemandTypeCalculate) Then

End If

' Stosowanie kontynuacji linii ulatwia czytanie
' diugich deklaracji APIL
Declare Function SHGetSpecialFolderPath Lib "Shell132.d11" _
(ByVal hwndOwner As Long, _
ByRef szBuffer As String, _
ByVal TFolder As Long, _
ByVal bCreate As Long) As Long

Najlepsze praktyki programowania w VBA

Najlepsze ogolne praktyki programowania w VBA

Dyrektywy dla modutu

4 Option Explicit. Zawsze w kazdym module uzywaj instrukcji Option Explicit.
Nie sposob przeceni¢ waznosci takiego postegpowania. Bez Option Explicit
kazda literowka spowoduje utworzenie przez VBA nowej zmiennej typu
Variant. Tego rodzaju btad jest bardzo zdradziecki, gdyz czasem nawet nie
powoduje natychmiastowego btedu wykonania. Jednak ostatecznie rezultaty
dziatania aplikacji beda btedne. Btad tego rodzaju ma wielkie szanse, by nie
zosta¢ zauwazonym az do rozpowszechnienia aplikacji i w niektorych
okolicznos$ciach bgdzie go trudno wykry¢é.

Instrukcja Option Eplicit wymusza jawne deklarowanie wszystkich uzywanych
zmiennych i powoduje wyswietlenie przez VBA btgdu kompilacji (po wybraniu
z menu VBE polecenia Debug/Compile) natychmiast po zidentyfikowaniu
nierozpoznawalnej nazwy. Dzigki temu znajdowanie literowek staje si¢ tatwe.
Aby mie¢ pewnos¢, ze instrukcja Option Explicit bedzie automatycznie
umieszczana na gorze kazdego tworzonego modulu, powinienes z menu VBE
wybrac polecenie Tools/Options/Editor 1 wlaczy¢ opcje Require Variable
Declaration. Takie postgpowanie jest bardzo zalecane.

4 Option Private Module. Instrukcja Option Private Module sprawia, ze wszystkie
procedury z modutu, w ktorym zostala uzyta, sa niedostgpne za pomoca menu
uzytkownika Excela oraz w innych projektach Excela. Uzywaj tej instrukcji,
aby ukry¢ procedury, ktdre nie moga by¢ wywotywane spoza aplikacji.

56

Excel. Programowanie dla profesjonalistow

Metoda Applicatin.Run pozwala obchodzi¢ instrukcje Option Private Module i uru-
chamia¢ prywatne procedury mimo wprowadzonego ograniczenia.

4 Option Base 1. Instrukcja Option Base 1 nadaje warto§¢ 1 dolnym granicom
indeksow wszystkich tablic, dla ktorych granica ta nie zostata oddzielnie ustalona.
Nie uzywaj tej instrukcji. Lepiej dla wszystkich uzywanych indeksow tablic
okreslaj granice gorne i dolne. Procedura utworzona w module, w ktorym uzyto
instrukcji Option Base 1, moze nie dziata¢ poprawnie po skopiowaniu do modutu,
gdzie tej instrukcji brakuje, a to oznacza niespelnienie jednej z podstawowych
zasad projektowania aplikacji, jaka jest mozliwo$¢ powtornego uzycia.

4 Option Compare Text. Instrukcja Option Compare Text w module, w ktorym
zostala uzyta, wymusza tekstowe, zamiast binarnego, porownywanie tancuchow
tekstowych. Przy takim porownaniu litery wielkie i male sa traktowane jako
tozsame, za$ przy poréwnaniu binarnym sa uznawane za roézne. Instrukcji
Option Compare Text nalezy unika¢ z takich samych powodow, jak instrukcji
Option Base 1. Powoduje ona inne dziatanie procedur po umieszczeniu ich
w modutach, gdzie nie zostata uzyta. Ponadto poréwnania tekstowe sa o wiele
bardziej kosztowne obliczeniowo niz poréwnania binarne. Zatem uzycie
instrukcji Option Compare Text powoduje spowolnienie wszystkich poréwnan
tekstowych dokonywanych w module, w ktorym zostala uzyta. Wigkszo$¢
funkcji Excela i VBA wykorzystywanych do poréwnywania tekstow posiada
argument pozwalajacy na okreslenie, czy ma by¢ wykonane porownanie binarne,
czy tekstowe. Gdy trzeba uzy¢ porownania tekstowego, o wiele lepiej uzywac
tych argumentow.

Jedynie w kilku rzadkich przypadkach uzycie Option Compare Text jest wymagane.
Najczestszym jest porownywanie tancuchéw za pomocag operatora VBA Like, bez
rozrozniania liter wielkich i matych. Jedynym sposobem zmuszenia operatora Like do
nieodrdzniania liter wielkich 1 matych jest zastosowanie instrukcji Option Compare Text.
Powiniene$ wowczas procedury wymagajace uzycia tej instrukcji umieéci¢ w oddzielnym
module, aby je odseparowac od innych, ktérym skazenie ta instrukcja nie jest potrzebne.
Upewnij sig, ze przyczyny takiego dzialania wyjasnites odpowiednio w komentarzu na
poziomie modutu.

Zmienne i state

Unikaj ponownego uZywania zmiennych. Kazda zmienna zadeklarowana w progra-
mie powinna shuzy¢ tylko jednemu celowi. Wielokrotne uzywanie do réznych celéw
tych samych zmiennych oszczedza jedynie lini¢ deklaracji zmiennej, ale sprowadza
na program wielkie niebezpieczenstwo potencjalnego zamieszania. Jezeli probujesz
okresli¢, w jaki sposob procedura dziata i pamigtasz, do czego stuzyta okreslona zmienna
W innym miejscu, w sposob naturalny zaktadasz, ze przy kolejnym uzyciu ma wyko-
nac to samo. Jezeli nie jest to prawda, trudno bedzie zrozumie¢ logike takiego kodu.

Unikaj uzywania zmiennych typu Variant. Jezeli tylko jest to mozliwe, nie stosuj
zmiennych typu Variant. Niestety, VBA nie jest jezykiem wymagajacym duzej dys-
cypliny pisania kodu. Dlatego mozesz po prostu deklarowa¢ zmienne bez okreslania

Rozdziat 3. ¢ Najlepsze praktyki programowania w Excelu i VBA 57

ich typu, a VBA utworzy je jako zmienne typu Variant. Przyczyny unikania uzywania
zmiennych Variant sa nastgpujace.

4 Zmienne typu Variant sa bardzo nieefektywne. Wynika to z faktu, ze
zmienne Variant sa bardzo skomplikowanymi strukturami, przystosowanymi
do przechowywania danych wszelkich typow, ktore moga by¢ stosowane
w jezyku programowania VBA. Do wartos$ci Variant nie ma bezposredniego
dostepu i1 nie moga by¢ one modyfikowane bezposrednio, jak w przypadku
zmiennych podstawowych typow, takich jak Long i Double. Do wykonania
jakiejkolwiek operacji na zmiennej Variant VBA musi uzywac ukrytej
przed uzytkownikiem serii wywotan Windows API.

4 Dane przechowywane w zmiennych typu Variant moga zachowywac¢ sie
w spos6b niespodziewany. Poniewaz zmienne Variant sa zaprojektowane do
przechowywania danych dowolnego typu, to, co wktadamy do takiej zmiennej,
nie zawsze jest tym samym, co otrzymamy z powrotem. Uzyskujac dostgp do
danej Variant, VBA usiluje narzuci¢ (coerce) typ, jaki uwaza za najbardziej
sensowny w kontekscie danego dziatania. Jezeli musisz stosowac zmienne Variant,
zawsze przed uzyciem dokonuj jawnego rzutowania danych na wlasciwy typ.

Baqd? swiadom diabla, ktéry thwi w szczegétach narzucania typu danych (ETC —
evil type corecion). ETC to kolejny objaw wynikajacy z faktu, ze VBA nie jest jezykiem
wymagajacym $cistej dyscypliny pisania kodu. W rezultacie zdarza si¢, ze VBA do-
konuje automatycznej konwersji jednego typu danych na inny, calkowicie niezwiazany
z poprzednim. Najczg$ciej zdarza, ze zmienne String przechowujace liczby sa kon-
wertowane na typ Integer, a zmienne Boolean na rownowazniki typu String. Nie
mieszaj zmiennych réznego typu, bez informowania VBA, w jaki sposob te zmienne
maja by¢ traktowane, co powinienes robi¢ przez ich rzutowanie na wlasciwy typ za
pomoca specjalnych funkcji rzutowania (np. CStr, CLng Iub CDb1).

Unikaj deklaracji o skladni As New. Nigdy do deklarowania zmiennych nie stosuj
sktadni As New. Przyktadowo podana nizej posta¢ deklaracji zmiennej obiektowej nie
powinna by¢ nigdy uzyta:

Dim rsData As new ADODB.Recordset

Jezeli VBA napotka lini¢ kodu, w ktorej ta zmienna zostanie uzyta bez wczesniejszego
zainicjalizowania, automatycznie utworzy jej nowy egzemplarz. Nigdy nie bedzie to
dziatanie, jakiego pragniesz. Dobra praktyka programowania wymaga, aby programista
utrzymywat petna kontrolg nad wszystkimi obiektami uzywanymi w programie. Jezeli
VBA napotyka w kodzie niezainicjalizowana zmienna obiektowa, niemal na pewno
jest to spowodowane przez btad, o ktorym chciatbys$ by¢ natychmiast poinformowany.
Dlatego wtasciwe deklarowanie zmiennych obiektowych powinno wygladaé, tak jak
ponizej:

Dim rsData As ADODB.Recordset

Set rsData = New ADODB.Recordset

Jezeli uzyjesz takiej deklaracji i inicjalizacji, a zmienna obiektowa zostanie zniszczo-
na gdzie$ w procedurze, po czym nie§wiadomie si¢ do tej zmiennej odwolasz, VBA
natychmiast powiadomi Ci¢ o tym, generujac btad egzekucji: ,,Object variable or With
block variable not set”.

58

Excel. Programowanie dla profesjonalistow

Zawsze przeprowadzaj pelnq kwalifikacje nazw obiektowych. Zawsze w deklaracjach
zmiennych i w kodzie stosuj pelna kwalifikacj¢ nazw obiektowych, podajac nazwe
wraz z przedrostkiem klasy. Nalezy tak robi¢, gdyz wiele bibliotek posiada obiekty
tak samo nazwane. Jezeli zadeklarujesz zmienna obiektowa, podajac jedynie nazwe
obiektu, a aplikacja odwotuje si¢ do wielu bibliotek, VBA utworzy zmienna z pierw-
szej biblioteki z listy Tools/References, w jakiej znajdzie tak nazwany obiekt. Nie
zawsze jest to obiekt, jakiego potrzebujesz.

Kontrolki formularzy UserForm sa przyktadem najczestszych btedow powodowanych
przez deklarowanie nazw nie w petni kwalifikowanych. Jezeli np. chcesz zadeklaro-
wac¢ zmienng obiektowa odwotujaca si¢ do kontrolki TextBox na Twoim formularzu,
mozesz probowac zrobié to nast¢pujaco:

Dim txtBox As TextBox
Set txtBox = Me.TextBoxl

Niestety, gdy tylko VBA sprobuje wykonaé druga linig¢ kodu, zostanie wygenerowany
btad ,,Type mismatch”. Stanie sig tak dlatego, ze biblioteka obiecktowa Excela zawiera
obiekt TextBox, a na liscie Tools/References znajduje si¢ przed biblioteka MSForms.
Wiasciwy sposob zapisania tego kodu jest nastepujacy:

Dim txtBox As MSForms.TextBox

Set txtBox = Me.TextBoxl

Nigdy nie ustalaj sztywnych granic indeksow tablic. Jezeli przebiegasz w petli przez
wartosci tablicy, nigdy nie uzywaj sztywnych granic indeksowania. W zamian stosuj
funkcje LBound 1 UBound, tak jak w listingu 3.11.

Listing 3.11. Wiasciwy sposob przebiegania w petli przez wartosci tablicy

Dim TIndex As Long
Dim alListItems(1l To 10) As Long

' Tutaj zatadyj tablice.
For T1Index = LBound(allListItems) To UBound(allListItems)

' Zrob cos z kazdq wartosciq.
Next T1Index

Powodem takiego postgpowania jest fakt, ze dolne i goérne granice indekséow tablic
czesto zmieniaja si¢ podczas tworzenia i konserwacji aplikacji. Jezeli w petli pokazanej
powyzej ustalisz sztywne granice 1 i 10, bedziesz musial pamigtaé¢ o aktualizowaniu
tych wartosci po kazdej zmianie tablicy allistItems. Pgtla utworzona z uzyciem LBound
1 UBound aktualizuje si¢ sama.

Po kaZdej instrukcji Next zawsze podawaj nazwe licznika petli. W listingu 3.11 de-
monstrujemy jeszcze jedna dobra praktyke kodowania. Po instrukcji Next zawsze nale-
zy podawac nazwe zmiennej indeksowej petli. Przestrzeganie tej zasady, choc nie jest
to $cisle wymagane przez VBA, sprawia, ze kod jest tatwiejszy do zrozumienia,
zwlaszcza gdy odleglto$¢ migdzy instrukcjami For i Next jest duza.

Rozdziat 3. ¢ Najlepsze praktyki programowania w Excelu i VBA 59

Uzywaj stalych. Stale sa bardzo przydatnymi elementami programowania. Stuza mi¢dzy
innymi nastgpujacym celom.

4 Eliminuja ,,;magiczne liczby”, zastgpujac je rozpoznawalnymi nazwami, np.
co moze oznaczac liczba 50 w podanej nizej linii kodu?

If 1Index < 50 Then

Nie mozna si¢ tego dowiedzie¢. Moze to wiedzie¢ jedynie autor kodu, jezeli
jeszcze nie zapomnial. Jesli jednak zobaczysz tekst napisany, tak jak ponize;j,
z tatwoscia odgadniesz jego sens.

Const TMAKS LICZBA PLIKOW WEJSC As Long = 50
' Jakis kod.

If 1Index < TMAKS_LICZBA_PLIKOW_WEJSC Then

Jezeli podczas pisania kodu bedziesz chcial pozna¢ warto$¢ stalej, mozesz
klikna¢ prawym przyciskiem jej nazweg i wybra¢ z menu podrgcznego polecenie
Definition, a zostaniesz natychmiast przeniesiony do linii, gdzie ta stata
zostata zdefiniowana. W trybie przerwania wykonania jest jeszcze tatwiej.
Zwykte naprowadzenie kursora myszy na stala spowoduje wyswietlenie
okienka podpowiedzi z jej wartosScia.

4 State poprawiaja efektywnos$¢ kodowania i utatwiaja unikanie btedow
duplikacji danych. Zat6zmy, ze w poprzednim przyktadzie odwolywates sig
wielokrotnie do maksymalnej liczby plikow wejsciowych i w pewnym momencie
bedziesz musial przystosowac program do obstugi wigkszej liczby plikow.
Jezeli w réznych miejscach wpisale$ na sztywno maksymalna liczbg plikow
wejsciowych, bedziesz musiat odszukaé wszystkie te miejsca i zmieni¢ podana
warto$¢. Jesli uzyles statej, musisz zmienic jej wartos$¢ tylko w jednej deklaracji,
a zostanie ona automatycznie zaktualizowana we wszystkich miejscach kodu,
gdzie wystepuje. Taka sytuacja jest bardzo czesta przyczyna btedow, ktorych
z tatwoS$cia mozesz unikna¢, uzywajac statych zamiast wartosci wpisywanych
na sztywno.

Zasieg zmiennej

Zmienne publiczne sa niebezpieczne. Moga by¢ bez ostrzezenia modyfikowane w do-
wolnym miejscu aplikacji, z powodu tego ich warto$¢ bywa nieprzewidywalna. Prze-
czy to jednej z podstawowych zasad programowania, czyli hermetyzacji. Zawsze tworz
zmienne z minimalnym mozliwym zasiggiem. Zaczynaj od zmiennych lokalnych (na
poziomie procedury) i rozszerzaj ten zasigg jedynie wtedy, gdy jest to bezwzglednie
konieczne.

Tak jak w przypadku wigkszosci naszych zasad, tak i tym razem istnieje kilka wyjatkow,
gdy zmienne publiczne sa przydatne, a nawet konieczne.

4 Gdy zmienne przed uzyciem musza by¢ przekazane daleko w glab stosu.
Jezeli np. procedura A czyta pewne dane, potem przekazuje je procedurze B,
ktora przekazuje je procedurze C, ktora przekazuje je procedurze D, gdzie
ostatecznie sa w jakims$ celu uzyte, lepiej przekazac je bezposrednio z procedury
A do D za pomoca zmiennej publiczne;.

60

Excel. Programowanie dla profesjonalistow

4 Pewne naturalnie publiczne klasy, jak klasa obstugi zdarzen na poziomie
aplikacji, wymagaja publicznych zmiennych obiektowych, ktore nigdy nie
znajda si¢ poza zasiggiem podczas dziatania aplikacji.

Wczesne i p6Zne wigzanie

Rozréznienie migdzy wezesnym wiazaniem (early binding) a p6znym wiazaniem (late
binding) jest czgsto zle rozumiane i mylone ze sposobem tworzenia obiektu. Wczesne
lub pézne wiazanie zmiennej zalezy jedynie od sposobu zadeklarowania zmiennej
przechowujacej odwotanie do obiektu. Zmienne zadeklarowane z typem okreslonego
obiektu sg zawsze wczesnie wiazane. Zmienne zadeklarowane jako zmienne typu Object
lub Variant sa zawsze pozno wiazane. W listingu 3.12 pokazujemy przyktad pdznego
wiazania odwotania, a w listingu 3.13 — wczesnego.

Listing 3.12. Pdzne wiqzanie odwotania do obiektu ADO Connection

Dim objPolaczenie As Object

' Niezaleznie od sposobu utworzenia obiektu, bedzie on

' pdzno wiqzany z powodu zadeklarowania zmiennej

' As Object.

Set objPolaczenie = New ADODB.Connection

Set objPolaczenie = CreateObject ("ADODB.Connection")

Listing 3.13. Wczesne wiqzanie odwolania do obiektu ADO Connection

Dim cnPolaczenie As ADODB.Connection

' Niezaleznie od sposobu utworzenia obiektu, bedzie on

' wezesnie wiqzany z powodu typu danych uzytego

' wdeklaracji zmiennej.

Set cnPolaczenie = New ADODB.Connection

Set cnPolaczenie = CreateObject("ADODB.Connection")

Jezeli uzywasz wezesnego wigzania z obiektem spoza modelu obiektowego Excela,
pamigtaj, ze wezesniej musisz ustanowi¢ odwotanie do odpowiedniej biblioteki obiekto-
wej za pomoca polecenia Tools/References z menu Visual Basic Editora. Aby np. utwo-
rzy¢ wezesne wiazanie zmiennej odwolujacej si¢ do obiektow ADO, musisz ustanowi¢
odwotanie do biblioteki Microsoft ActiveX Data Objects 2.x Library, gdzie x oznacza
wersj¢ ADO, jakiej zamierzasz uzywac.

Powinienes$ stosowac¢ wczesne wiazania zmiennych wszedzie, gdzie jest to mozliwe.
Weczesne wigzanie zmiennych, w pordwnaniu z péznym wigzaniem, daje nastgpujace
korzysci.

4 Poprawa wydajnosci. Jezeli uzywasz zmiennej obiektowej, ktorej typ danych
jest znany VBA juz podczas kompilacji, VBA moze poszukaé miejsca dla
wszystkich wlasciwos$ci 1 metod obiektu, z jakich w kodzie korzysta i zapisac
je wraz z kodem. Jezeli potem, podczas dziatania programu, nastapi odwolanie
do takiej metody lub whasnosci, VBA po prostu uruchomi kod zapisany lokalnie

Rozdziat 3. ¢ Najlepsze praktyki programowania w Excelu i VBA 61

(jest to pewne uproszczenie, gdyz w rzeczywistosci VBA przechowuje offset
kodu, ktory ma by¢ uruchamiany ze znanego punktu startowego w pamigci,
bedacego poczatkiem struktury nazywanej VTable danego obiektu).

Jezeli stosujesz pozne wiazanie zmiennej obiektowej, VBA nie moze z gory
przewidziec, jaki typ obiektu zmienna bedzie przechowywac, wigc w czasie
kompilacji nie moze optymalizowaé wywotania zadnej wlasciwosci ani
metody. Oznacza to, ze podczas dzialania programu po kazdym wywolaniu
metody lub wlasciwosci zmiennej wiazanej pézno VBA musi poszukac tej
zmiennej, aby ustalié, jaki typ obiektu zawiera, wyszukac¢ nazwe¢ wywotanej
metody lub wlasciwosci, by odnalez¢ ja w pamigci i wykona¢ kod przechowywany
pod danym adresem. Jest to proces znacznie wolniejszy niz w przypadku
zmiennej wczesnie wigzane;.

¢ Scisle weryfikowanie typu. Jezeli w przyktadzie poznego wiazania z listingu
3.12 przypadkowo przypiszesz zmiennej obiektowej odwotanie do obiektu
ADO Command zamiast ADO Connection, VBA nie wykryje bigedu. O tym, Ze zostat
popetiony blad, dowiesz si¢ p6zniej w dalszej czgsci kodu, gdy sprobujesz
uzy¢ metody lub wiasciwosci nicobstugiwanej przez obiekt Command. W przypadku
wczesnego wigzania VBA natychmiast wykryje, ze probujesz przypisac¢ do
zmiennej obiecktowej odwotanie btednego typu i powiadomi Cig¢ o tym
komunikatem ,,Type mismatch”. Nieprawidtowe odwotania do wlasciwosci
i metod moga by¢ wykrywane wczesniej, jeszcze przed uruchomieniem kodu.
VBA sprobuje odnalez¢ w bibliotece nazwg wlasciwosci lub metody juz
w czasie kompilacji i zglosi btad, jezeli takiej nazwy nie uda si¢ odszukac.

4 Dostepnosé IntelliSense. Wczesne wiazanie zmiennych obiektowych utatwia
roéwniez samo programowanie. Poniewaz VBA wie doktadnie, jaki typ obiektu
zmienna bedzie reprezentowaé, moze zanalizowac wlasciwa biblioteke obiektowa
i wyswietli¢ rozwijana liste wszystkich wtasciwosci i metod dostgpnych dla
danego obiektu zaraz po napisaniu kropki po nazwie zmienne;.

Jak mozesz oczekiwac, w niektorych przypadkach nalezy uzywaé péznego wiazania
zamiast wczesnego. Dwie gtéwne przyczyny uzywania raczej p6znego niz wezesnego
wiazania sa nastgpujace.

1. P6zniejsza wersja biblioteki obiektowej nie jest zgodna z wcze$niejsza.

Taka sytuacja zdarza si¢ az nazbyt czgsto. Jezeli ustalisz odwotania do pozniejszej
wersji biblioteki obiektowej, a potem sprobujesz uruchomic aplikacjg na
komputerze z wczesniejsza wersja, natychmiast pojawi si¢ btad kompilacji
,,Can’t find project or library” i odwotanie na maszynie docelowej zostanie
oznaczone prefiksem MISSING. W przypadku tego bledu najbardziej zdradzieckie
jest to, ze linia kodu zrodtowego oznaczona jako bl¢dna zwykle nie ma nic
wspolnego z biblioteka obiektowa, ktora jest rzeczywista przyczyna problemu.

Jezeli musisz uzywac obiektow aplikacji, ktora powoduje takie bledy i chcesz
umozliwi¢ uzytkownikom korzystanie z dowolnej wersji aplikacji, powinienes$
zastosowa¢ wylacznie po6zne wigzania dla wszystkich zmiennych odwotujacych
si¢ do obiektow w tej aplikacji. Jezeli tworzysz nowe obiekty, powinienes
uzy¢ funkcji CreateObject z niezaleznym od wersji identyfikatorem ProgID
obiektu, jaki chcesz utworzy¢, zamiast sktadni = New 0bjectName.

62

Excel. Programowanie dla profesjonalistow

ff’%

2. Chcesz uzy¢ aplikacji, ktorej — by¢ moze — nie ma na komputerze
uzytkownika i sam nie mozesz jej zainstalowac.

W takim przypadku powiniene$ skorzysta¢ z pé6znego wigzania, co pozwoli
unikna¢ btedu kompilacji, jaki wystapitby natychmiast po probie uruchomienia
aplikacji odwotujacej si¢ do nieistniejacej na danym komputerze biblioteki
obiektowej. Twoja aplikacja moze wowczas sprawdzi¢ istnienie potrzebne;j
biblioteki obiektowej i — jezeli nie bedzie ona zainstalowana — spokojnie
zakonczy¢ dziatanie.

Jezeli nawet ostatecznie uzyjesz w kodzie p6éZnego wigzania, wczesne wigzanie
tak bardzo zwigeksza efektywno$¢é programowania, ze warto je stosowaé podczas
pisania i testowania aplikacji. Zamiany na pdZne wigzania dokonaj dopiero w ostatniej
fazie testow przed dystrybucja.

Kodowanie defensywne

Kodowanie defensywne odnosi si¢ do wielu praktyk programistycznych obmyslanych
w celu zapobiezenia powstawaniu btedow i unikaniu ich pdézniejszego poprawiania.

Pisz aplikacje w najstarszej wersji Excela,
w jakiej — jak oczekujesz — moze by¢é uruchamiana

Cho¢ zespot Microsoftu tworzacy Excela bardziej niz inne przytozyt si¢ do zapewnienia
zgodnosci z poprzednimi wersjami, nie udato si¢ jednak wykluczy¢ wielu subtelnych
roznic. Jezeli dobrze znasz najnowsza wersjg, jest bardzo prawdopodobne, Ze napiszesz
aplikacjg, ktora nie bgdzie dzialata w wersjach poprzednich, gdyz uzyjesz jakiejs cechy,
jaka kiedys$ nie istniata.

Rozwiazaniem jest rozpoczynanie tworzenia aplikacji od najstarszej wersji, w jakiej
ma ona dziata¢. Moze to zmusi¢ Ci¢ do utrzymywania na jednym komputerze wielu
wersji Excela lub, co jest o wiele lepsze, posiadania kilku komputeréw z zainstalowanymi
réznymi wersjami. Tak czy inaczej, w praktyce jest to sprawa podstawowa. Jezeli utwo-
rzysz aplikacje w Excelu 2000, po czym dasz ja uzytkownikowi Excela 97 i przekonasz
si¢, ze nie dziala, bedziesz musiat debugowac i usuwac wiele fragmentow niespraw-
nego kodu. Oszczgdzisz wiele czasu 1 nerwow przez rozpoczgcie tworzenia aplikacji
w Excelu 97.

Jawnie uzywaj ByRef i ByVal

Jezeli procedura posiada argumenty, mozna je deklarowac jako ByRef i ByVal.

4 ByRef oznacza przekazywanie adresu zmiennej w pamigci zamiast wartosci tej
zmiennej. Jezeli wywotana procedura modyfikuje argument ByRef, modyfikacja
bedzie widoczna w procedurze wywotujacej.

4 ByVal oznacza przekazywanie do procedury wartosci zmiennej. Procedura
moze zmienia¢ argument ByVal, ale te zmiany nie beda widoczne w procedurze
wywotujacej. W rzeczywisto$ci procedura uzywa argumentow ByVal, tak jak
zmiennych deklarowanych lokalnie.

Rozdziat 3. ¢ Najlepsze praktyki programowania w Excelu i VBA 63

Zawsze deklaruj jawnie argumenty procedury jako ByRef lub ByVal. Jezeli pominiesz
specyfikacjg, argumenty zostana domyslnie zadeklarowane jako ByRef. Jezeli nie ma
koniecznosci, aby procedura wywotujaca znata zmiany argumentdéw, deklaruj argu-
menty jako ByVal, co zabezpieczy Ci¢ przed zmianami przekazywanymi wstecz do
procedury wywotujace;j.

Jedyne wyjatki to przekazywanie dtugich tancuchow, ktore sa o wiele efektywniej
przekazywane za pomoca argumentow ByRef, oraz argumenty tablicowe, ktorych nie
mozna przekaza¢ w trybie ByVal. Musisz pamigta¢, ze deklarowanie argumentéw pro-
cedury ByVal powoduje wigksze narazenie na narzucanie typu danych (ETC — evil
type coercion). Argumenty procedury ByRef muszq przekazywac typ danych, jaki zo-
stal zadeklarowany, gdyz w przeciwnym razie zostanie zgloszony btad kompilacji.
Natomiast w przypadku przekazywania do procedury warto$ci za pomoca argumentu
ByVal VBA bedzie usitowal wymusié¢ zgodno$¢ typu danych.

Jawnie wywotuj domysing wtasciwosé obiektu

Z wyjatkiem wlasciwos$ci Item obiektu Collection, nigdy nie nalezy wywotywacé wia-
$ciwosci obiektu w sposob niejawny jedynie przez uzywanie w wyrazeniu jego na-
zwy. W listingu 3.14 pokazujemy witasciwy i niewtasciwy dostgpu do wlasciwosci
obiektu na przyktadzie kontrolki MSForms.TextBox (Text jest domyslna wiasciwoscia
MSForms . TextBox).

Listing 3.14. Wiasciwosci domysine

' Sposob wiasciwy.
txtUsername.Text = "moje nazwisko"

' Sposob niewlasciwy.
txtUsername = "moje nazwisko"

Unikanie niejawnego uzywania wlasciwos$ci domyslnych sprawia, ze kod jest czytel-
niejszy i chroni przed btedami, jakie moga wystapic, jezeli wlasciwosci domyslne zo-
stang zmienione w przysztych wersjach Excela lub VBA.

Weryfikacja argumentow przed ich uzyciem w procedurach

Jezeli procedura akceptuje tylko argumenty wejsciowe o pewnych okre§lonych wia-
sciwo$ciach, np. wartosciach z okreslonego przedzialu, sprawdzaj, czy te warunki sa
spetnione przed proba uzycia tych argumentéw w procedurze. Chodzi o to, aby wy-
chwyci¢ btgdne dane wejsciowe tak wczesnie, jak to tylko mozliwe, aby wygenerowaé
zrozumiaty komunikat o btedzie i uprosci¢ debugowanie.

Gdziekolwiek to mozliwe, tworz narzedzia do weryfikowania zachowania procedur.
Takie narzgdzia sg nakladang na procedury ,,uprz¢za”, ktora pozwala na ich wielo-
krotne wywolywania i testowanie z roznymi zestawami argumentOw oraz sprawdza-
nie prawdziwos$ci uzyskiwanych wynikow. Budowanie takich ,,uprz¢zy” omowilisSmy
w rozdziale 16.

64

Excel. Programowanie dla profesjonalistow

Uzywaj licznikow chronigcych przed nieskonczonymi petlami

Tworz petle z automatycznymi zabezpieczeniami przed uzyciem warunkow powodujacych
nieskonczone dziatanie petli. Jednym z najpowszechniejszych btedow spotykanych
w petlach Do...While lub While...Wend jest tworzenie sytuacji, w ktorych warunki
sterujace petla nigdy nie zostana spetnione. Wowczas petla moze dziata¢ w nieskon-
czono$¢ (albo do czasu, gdy bedziesz miat szczgscie przerwac dziatanie aplikacji
przez nacisnigcie kombinacji klawiszy Ctri+Break, lub — gdy tego szczgécia zabrak-
nie — przez jej zamknigcie za pomocg Menadzera Zadan systemu Windows). Zawsze
dotaczaj licznik, ktory automatycznie przerwie dziatanie, gdy liczba przebiegow petli
przekroczy najwigksza warto$¢, jaka mozna uzna¢ za mozliwa do osiagnigcia w praktyce.
W listingu 3.15 pokazujemy petle Do. .While ze struktura zabezpieczajaca przed nie-
skonczonym dziataniem.

Listing 3.15. Licznik zabezpieczajqcy przed nieskoriczonym dziataniem petli

Dim bKontynuujPetle As Boolean
Dim TLicz As Long

bKontynuujPetle = True
1Licz =1

Do

' Kod umieszczony w tym miejscu powinien
' nada¢ zmiennej bKontynuujPetle wartos¢ False,
' gdy petla wykona swoje zadanie.

" Licznik zabezpieczajqcy powoduje bezwarunkowe
' wyjscie z petli po wykonaniu 10000 iteracji.
1licz = lLicz + 1

If TLicz > 10000 Then Exit Do

Loop While bKontynuujPetle

Jedynym celem umieszczenia zmiennej 1Licz wewnatrz pgtli jest wymuszenie zakon-
czenia jej biegu, jezeli kod w jej wnetrzu nie zdota nada¢ zmiennej sterujacej wartosci
konczacej iteracje zanim ich liczba osiagnie 10000 (stosowna liczba graniczna moze
by¢ rozna i zalezna od sytuacji). Ten typ konstrukcji nie jest zbytnim obciazeniem dla
petli, jezeli jednak wydajnosc jest sprawa kluczowa, uzywaj licznika bezpieczenstwa
do czasu uzyskania pewnosci, ze kod wewnatrz petli dziata wlasciwie, po czym usun
dodatkowe instrukcje Iub zamien je w komentarz.

Weczesnie i czesto uzywaj polecenia Debug/Compile

Nigdy nie pozwdl na to, aby Twdj kod pobtadzit wigcej niz o kilka zmian od czasu
bezblgdnego wykonania polecenia Debug/Compile. Odchodzenie od tej zasady grozi
dtugimi i nieefektywnymi sesjami debugowania.

Rozdziat 3. ¢ Najlepsze praktyki programowania w Excelu i VBA 65

Odwotujac sie do obiektow arkuszy, uzywaj nazw kodowych

Do arkuszy roboczych i arkuszy wykresow odwotyj si¢ zawsze przez nazwy kodowe
(CodeNames). Uzaleznianie odwotan od nazw na zaktadkach arkuszy jest ryzykowne,
poniewaz Ty sam lub inni uzytkownicy moga te nazwy zmienic, niszczac w ten sposob
kod korzystajacy z takich odwotan.

Weryfikuj typy danych obiektow wybieranych

Jezeli tworzona procedura ma operowaé na obiektach okreslonego typu wybieranych
przez uzytkownika, zawsze sprawdzaj typ wybranego obiektu za pomoca funkcji TypeName
lub konstrukeji If TypeOf...Is. Jezeli np. musisz dziata¢ na zakresach wybieranych
przez uzytkownika, zawsze przed pdjsciem dalej sprawdzaj, czy wybierane obiekty
sa rzeczywiscie typu Range. Zostato to pokazane na listingu 3.16.

Listing 3.16. Sprawdzanie, czy wybrany obiekt jest wlasciwego typu

' Kod zostal zaprojektowany do dzialania na obiektach Range.
[T TypeOf Selection Is Excel.Range Then
' OK, to jest obiekt Range.
' Kontynuyj dziatanie.
Else
' Blqd, to nie jest obiekt Range.
MsgBox "Prosze wybrac zakres komoérek", vbCritical, "Btad!"
End If

Nadzorowanie zmian

Nadzorowanie zmian, zwane takze kontrola wersji, na najbardziej elementarnym po-
ziomie polega na stosowaniu dwoch praktyk: zachowywaniu zestawu poprzednich
wersji (dzigki czemu mozesz zawsze powrdci¢ do wersji sprzed wprowadzenia zmian
i bledow programistycznych) oraz dokumentowaniu wszystkich zmian dokonywanych
w aplikacji z uptywem czasu.

Zachowywanie wersji

Gdy najbardziej doswiadczeni programisci rozmawiaja o kontroli wersji, mysla o uzywaniu
dedykowanego oprogramowania w rodzaju Microsoft Visual Source Safe. Jednakze
oprogramowanie tego typu jest drogie, trudne do opanowania i zle integruje si¢ z apli-
kacjami budowanymi w Excelu. Dzieje sig tak dlatego, ze Excel nie zapisuje w sposob
naturalny modutow w oddzielnych plikach tekstowych. Metoda kontroli wersji, jaka
tu zalecamy, jest szybka, prosta, nie wymaga zadnego specjalnego oprogramowania,
a przynosi te same zasadnicze korzysci, jak metody tradycyjne.

Najwazniejszym celem stosowania systemu kontroli wersji jest zapewnienie mozliwosci
odzyskania wczesniejszej wersji projektu po napotkaniu znaczacych probleméw w wersji
biezacej. Jezeli po wprowadzeniu znaczacych modyfikacji kodu rzeczy poszty w zta
strong i nagle pozostate$ z powaznie uszkodzonym plikiem, Twoja sytuacja moze by¢
bardzo trudna, jesli nie masz kopii poprzedniej wersji, ktora pozwolitaby na odzyskanie
dzialajacej aplikacji.

66 Excel. Programowanie dla profesjonalistow

Prosty rodzaj systemu kontroli wersji, pozwalajacy na uwolnienie si¢ od klopotow tego
rodzaju, moze zosta¢ wdrozony w sposob nastgpujacy. Po pierwsze, w folderze, kto-
rego uzywasz do zapisywania wersji biezacej, utworz folder o nazwie KopieZapasowe
(Backup). Zawsze, gdy zamierzasz wprowadza¢ znaczace rozszerzenia lub modyfika-
cje projektu, a przynajmniej raz dziennie uzywaj programu kompresujacego, np.
WinZipa, do skompresowania wszystkich plikow z folderu roboczego do pliku z nazwa:
Kopia RRRRMMDDGG.zip, gdzie R oznacza rok, M — miesiac, D — dzien, a G —
godzing. Taki format nazw zapewni ich niepowtarzalno$¢ i pozwoli na fatwe sorto-
wanie w oknie Eksploratora Windows. Utworzony plik przesun do podfolderu Kopie-
Zapasowe 1 wrd¢ do pracy.

Po napotkaniu problemu bedziesz mogh wroci¢ do najnowszej wersji kopii. Oczywiscie
wymaga to poswigcenia nieco czasu, ale jezeli bedziesz pilnie wykonywa¢ kopie, zmini-
malizujesz straty. Za kazdym razem, gdy bedziesz pewien, ze masz juz w petni przete-
stowana nowa wersj¢ projektu, bedziesz mogl wykasowac z folderu KopieZapasowe
wigkszo$¢ zapisanych tam plikow. Warto jednak pozostawia¢ przynajmniej pojedyn-
cze kopie z kazdego tygodnia pracy przez caly okres zycia projektu.

Dokumentowanie zmian za pomoca komentarzy

Gdy utrzymujesz kod, dokonujesz znaczacych zmian w logice procedur, nalezy row-
niez doda¢ krotka notatke z opisem zmiany, datg i nazwiskiem dokonujacego zmiany,
umieszczong w komentarzu na poziomie procedury, co mozna zobaczyé w listingu
3.3. Wszystkie nietrywialne modyfikacje kodu powinny by¢ opatrzone wewngtrznymi
komentarzami, zawierajacymi dat¢ dokonania zmiany, nazwisko osoby, ktéra zmiang
wprowadzita, zwlaszcza gdy nad projektem pracuje grupa.

Whioski

Niezaleznie od tego, czy zastosujesz konwencj¢ nazw zaproponowana w tej ksiazce,
czy przygotujesz wiasna, stosuj ja konsekwentnie w catej aplikacji i nie zmieniaj z upty-
wem czasu. Dzigki temu kod bedzie samoudokumentowany i tatwy do zrozumienia.
Poszczegdlne warstwy logiczne aplikacji koduj jako byty niezalezne. Dzigki temu
zmiany w jednej warstwie nie beda zmuszaty do przebudowywania znacznej czgsci
aplikacji. Suto komentuj kod na wszystkich poziomach. Dzigki temu w przysztosci bedzie
fatwiej zrozumiec¢ cel jakiej$ sekcji programu bez zmudnego odczytywania szczegotow
kodu. Postgpowanie zgodne z dobrymi praktykami opisanymi w tym rozdziale pozwoli
Ci na budowanie aplikacji odpornych, zrozumiatych i tatwych do utrzymania.

