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Każde stówo - podobnie jak imię - niesie w sobie różną treść, budzi różne skojarzenia
zależne od doświadczeń tego, kogo spotyka, l tak, stówo analiza znaczy dla każdego
matematyka coś innego. Dla jednych obejmuje ono niewiele więcej niż rachunek
różniczkowy i całkowy, dla innych kojarzy się z twierdzeniem Riemanna-Rocha czy
formami harmonicznymi.

Jest to jedyny podręcznik, który wychodząc od zera - dokładniej mówiąc od liczb wy-
miernych - dochodzi do teorii dystrybucji, całek prostych, analizy na rozmaitościach
zespolonych, przestrzeni Kahlera, teorii snopów i wiązek wektorowych itd.

Celem moim byto pokazanie mtodemu człowiekowi piękna i bogactwa tego niezwyk-
łego świata, jakim jest współczesna analiza matematyczna.

(z Przedmowy)

Jest to reprint pierwszego wydania trzeciej części trylogii Profesora
Krzysztofa Maurina/toa//za, które ukazało się nakładem PWN w 1991 roku
jako tom 71 BIBLIOTEKI MATEMATYCZNEJ.

Część III. Analiza zespolona, dystrybucje, analiza harmoniczna. W tej
części Autor, zakładając, że Czytelnik zna elementy topologii ogólnej i cał-
kowania form różniczkowych, wnika najpierw głębiej w analizę zespoloną,
a następnie idzie drogą Riemanna, dla którego teoria potencjału, na po-
wierzchniach związanych nierozerwalnie z jego nazwiskiem, była głównym
narzędziem. Omawia m.in.: powierzchnie Riemanna, przedłużenie ana-
lityczne i twierdzenie o uniformizacji, funkcje i formy modułowe, twierdzenie
Riemanna-Rocha wraz z zastosowaniami. Tak jak w poprzednich częściach
wykład jest opatrzony licznymi uwagami natury historycznej, np. zawiera
obszerny szkic dotyczący historii badań problemu uniformizacji.

Książka zainteresuje fizyków i matematyków, studentów tych kierunków, dok-
torantów, nauczycieli akademickich, naukowców.
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- książka, w której Autor dowodzi jedności matematyki i fizyki


