

# Table of contents

|                                                                                                                      |    |
|----------------------------------------------------------------------------------------------------------------------|----|
| SYMBOLS AND ABBREVIATIONS.....                                                                                       | 6  |
| 1. INTRODUCTION.....                                                                                                 | 7  |
| 2. BRIEF DESCRIPTION OF THE WASTE WATER<br>TREATMENT PLANT IN KĘDZIERZYN-KOŹLE .....                                 | 9  |
| 2.1. DESCRIPTION OF THE WASTE WATER TREATMENT PLANT<br>IN KĘDZIERZYN-KOŹLE .....                                     | 9  |
| 2.2. DESCRIPTION OF PROCESS FACILITIES IN THE WASTE WATER<br>TREATMENT PLANT .....                                   | 10 |
| 2.2.1. Preliminary treatment .....                                                                                   | 10 |
| 2.2.2. Biological unit .....                                                                                         | 10 |
| 2.2.3. Final treatment .....                                                                                         | 11 |
| 3. CHARACTERISTICS OF HYDRAULIC PARAMETERS OF<br>BIOLOGICAL UNIT USING TRACER TEST.....                              | 13 |
| 3.1. TRACER TEST .....                                                                                               | 13 |
| 3.1.1. Model of ideal chemical reactor .....                                                                         | 14 |
| 3.1.2. Determination of retention curve.....                                                                         | 16 |
| 3.1.3. Modelling of non-ideal (real) hydraulic retention time .....                                                  | 19 |
| 3.2. PRIMARY HYDRAULIC PARAMETERS .....                                                                              | 21 |
| 3.2.1. Hydraulic retention time HRT .....                                                                            | 21 |
| 3.2.2. Tracer recovery rate .....                                                                                    | 23 |
| 3.2.3. Normalization of the RTD retention curve .....                                                                | 23 |
| 3.3. RESULTS OF TESTS OF THE LITHIUM CHLORIDE CONCENTRATION<br>DISTRIBUTION IN THE WASTE WATER TREATMENT PLANT ..... | 25 |
| 3.4. MODELLING OF HYDRAULIC RETENTION TIME DISTRIBUTION ..                                                           | 27 |
| 3.4.1. Tanks-in-series TIS model.....                                                                                | 27 |
| 3.4.2. Extended-Tanks-in-series ETIS model.....                                                                      | 27 |
| 3.4.3. Martin model .....                                                                                            | 28 |
| 3.4.4. Obtained modelling results .....                                                                              | 29 |
| 4. MEASUREMENTS AND ANALYSIS OF ELECTRICAL<br>VALUES IN THE WASTE WATER TREATMENT PLANT .                            | 41 |
| 4.1. RESULTS OF TESTS OF ELECTRICAL PARAMETERS<br>CARRIED OUT DURING MEASUREMENTS CAMPAIGN .....                     | 41 |
| 4.2. RESULTS OF ELECTRICAL VALUES TESTS .....                                                                        | 42 |
| 4.2.1. Analysis of blowers voltage.....                                                                              | 42 |
| 4.2.2. Analysis of blowers currents .....                                                                            | 44 |
| 4.2.3. Analysis of active powers.....                                                                                | 46 |

|                                                                                                                                                                                    |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 4.2.4. Analysis of reactive power .....                                                                                                                                            | 48        |
| 4.2.5. Analysis of apparent power .....                                                                                                                                            | 50        |
| 4.2.6. Power factor $\cos \varphi$ analysis .....                                                                                                                                  | 51        |
| 4.2.7. Analysis of power consumed by blowers .....                                                                                                                                 | 52        |
| <b>5. NON-LINEAR MODELLING OF CHANGES OF NITRATE NITROGEN USING HAMMERSTEIN-WIENER STRUCTURE.....</b>                                                                              | <b>55</b> |
| 5.1. HAMMERSTEIN-WIENER STRUCTURE .....                                                                                                                                            | 56        |
| 5.2. SPECIFICATION OF INPUT AND OUTPUT OF THE MODEL USED FOR IDENTIFICATION OF NON-LINEAR RELATIONSHIP BETWEEN NITRATE NITROGEN AND OUTFLOW OF WASTEWATER IN AEROBIC REACTOR ..... | 58        |
| 5.3. SELECTION OF STRUCTURE OF HAMMERSTEIN-WIENER MODEL .....                                                                                                                      | 61        |
| 5.4. SUMMARY OF IDENTIFICATION AND TESTING RESULTS.....                                                                                                                            | 62        |
| 5.5. THE RESULTS OF IDENTIFICATION OF NON-LINEAR MODEL OF CHANGES OF NITRATE NITROGEN USING THE BEST FIT CRITERION FOR TRAINING DATA SET .....                                     | 63        |
| 5.6. THE RESULTS OF IDENTIFICATION OF NON-LINEAR MODEL OF CHANGES OF NITRATE NITROGEN USING THE BEST FIT CRITERION FOR VALIDATION DATA SET .....                                   | 69        |
| 5.7. THE RESULTS OF IDENTIFICATION OF NON-LINEAR MODEL OF CHANGES OF NITRATE NITROGEN USING THE BEST SUM OF FIT CRITERION TO TRAINING AND TESTING DATA SET .....                   | 76        |
| <b>6. NON-LINEAR IDENTIFICATION OF AMMONIA NITROGEN OXIDATION PROCESS IN AEROBIC REACTOR .....</b>                                                                                 | <b>85</b> |
| 6.1. SPECIFICATION OF INPUT AND OUTPUT OF THE MODEL USED FOR IDENTIFICATION OF THE RELATIONSHIP MODEL FOR AMMONIA NITROGEN AND WASTEWATER OUTFLOW .....                            | 85        |
| 6.2. SELECTION OF STRUCTURE OF HAMMERSTEIN-WIENER MODEL .....                                                                                                                      | 88        |
| 6.3. LIST OF IDENTIFICATION AND VALIDATION RESULTS .....                                                                                                                           | 88        |
| 6.4. THE RESULTS OF IDENTIFICATION OF NON-LINEAR MODEL OF CHANGES OF AMMONIA NITROGEN USING THE BEST FIT CRITERION FOR TRAINING DATA SET .....                                     | 89        |
| 6.5. THE RESULTS OF IDENTIFICATION OF NON-LINEAR MODEL OF CHANGES OF AMMONIA NITROGEN USING THE BEST FIT CRITERION FOR VALIDATION DATA SET .....                                   | 96        |

|      |                                                                                                                                                                |     |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 6.6  | COMPARISON OF MODELLING RESULTS FOR NITRATE<br>NITROGEN AND AMMONIA NITROGEN .....                                                                             | 102 |
| 7.   | NON-LINEAR MODELLING OF SISO FOR TOTAL<br>ACTIVE POWER USED FOR AERATION<br>IN BIOLOGICAL UNIT .....                                                           | 105 |
| 7.1. | SPECIFICATION OF INPUT AND OUTPUT OF THE MODEL DURING<br>IDENTIFICATION OF NON-LINEAR RELATIONSHIP BETWEEN<br>ACTIVE POWER AND WASTEWATER OUTFLOW (SISO) ..... | 105 |
| 7.2. | SELECTION OF STRUCTURE OF HAMMERSTEIN-WIENER<br>MODEL .....                                                                                                    | 108 |
| 7.3. | LIST OF IDENTIFICATION AND VALIDATION RESULTS<br>FOR SISO MODEL.....                                                                                           | 108 |
| 7.4. | RESULTS OF IDENTIFICATION OF SISO MODEL AND<br>RESPONSE WITH THE BEST FIT TO THE TRAINING DATA SET ....                                                        | 109 |
| 7.5. | RESULTS OF IDENTIFICATION OF MODEL WITH RESPONSE<br>WITH THE BEST FIT TO THE TESTING DATA SET .....                                                            | 115 |
| 7.6. | RESULTS OF IDENTIFICATION OF MODEL WITH RESPONSE<br>WITH THE BEST SUM OF FIT TO THE TESTING AND<br>TRAINING DATA SET.....                                      | 123 |
| 8.   | IDENTIFICATION OF ACTIVE POWER ASSUMING<br>MISO HAMMERSTEIN-WIENER MODEL.....                                                                                  | 131 |
| 8.1. | SPECIFICATION OF INPUTS AND OUTPUTS OF THE MODEL .....                                                                                                         | 131 |
| 8.2. | SELECTION OF STRUCTURE OF HAMMERSTEIN-WIENER<br>MODEL .....                                                                                                    | 136 |
| 8.3. | LIST OF RESULTS OF IDENTIFICATION ASSUMING MISO<br>H-W MODEL .....                                                                                             | 137 |
| 8.4. | RESULTS OF IDENTIFICATION OF THE MISO MODEL WITH<br>OPTIMUM RESPONSE FROM THE POINT OF VIEW OF TRAINING<br>DATA SET .....                                      | 138 |
| 8.5. | RESULTS OF IDENTIFICATION OF MODEL WITH RESPONSE<br>WITH THE BEST FIT TO THE TESTING AND TO MAXIMUM<br>FIT SUM FOR TESTING AND TRAINING DATA SET.....          | 145 |
| 8.6. | COMPARISON OF RESULTS OF IDENTIFICATION AND<br>VALIDATION OF THE MISO MODEL WITH RESULTS OBTAINED<br>USING SISO MODEL .....                                    | 154 |
| 9.   | SUMMARY .....                                                                                                                                                  | 157 |
|      | REFERENCES .....                                                                                                                                               | 161 |
|      | ABSTRACT .....                                                                                                                                                 | 173 |